Skip to main content
Log in

Does hybrid LCA with a complete system boundary yield adequate results for product promotion?

  • COMMENTARY AND DISCUSSION ARTICLE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Hybrid life cycle assessment (LCA) with a complete system boundary is recognized as an advanced approach widely applied in comparative analysis with the goal of product promotion. Here, I evaluate the theoretical foundation, or assumptions, of hybrid LCA in this application and discuss alternative models. The goal of this article is partly to call attention to the restrictive assumptions involved in the models used in LCA and to instigate further research and effort to improve these models.

Methods

As with process-based LCA, hybrid LCA is a type of linear model when it is used to estimate changes. It relies on several restrictive assumptions such as fixed input/output coefficients and unlimited supply of inputs. Besides, hybrid LCA further rests on the assumption of economy-wide effect, i.e., a change of any magnitude in the output of any product would affect the entire economy. This may be another restrictive assumption, and to what extent it is reasonable depends on an array of factors, including the product being studied, its role in the economy, the magnitude of change, and the structure of the economy.

Results and discussion

Because of the restrictive assumptions, hybrid LCA may not necessarily yield adequate results for product promotion. This, however, does not mean that it entirely falls short, but that the assumptions need to be scrutinized and determined if they reasonably reflect the reality. If so, the results yielded by hybrid LCA may be adequate. But if not, the results fall short, and further research is needed.

Conclusions

For comparative analysis with the goal of product promotion, understanding how increases in the output of the product being studied would affect the economy is crucial. And this should form the basis of decision making. Alternative models to consider for large-scale changes include  computable general equilibrium models and rectangular choice of technology models, recognizing their limitations and assumptions as well. Alternatively, one may use simpler models such as process-based inventory but build scenarios to study how the impact of product promotion may ripple through the economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anex R, Lifset R (2014) Life cycle assessment: different models for different purposes. J Ind Ecol 18:321–323

    Article  Google Scholar 

  • Duchin F, Levine SH (2011) Sectors may use multiple technologies simultaneously: the rectangular choice-of-technology model with binding factor constraints. Econ Syst Res 23:281–302

    Article  Google Scholar 

  • Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  CAS  Google Scholar 

  • Finnveden G, Hauschild M, Ekvall T et al (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21

    Article  Google Scholar 

  • Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer Academic Pub, Dordrecht

    Book  Google Scholar 

  • Hertwich EG, Gibon T, Bouman EA et al (2015) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc Natl Acad Sci 112:6277–6282

    Article  CAS  Google Scholar 

  • Krugman P (1980) Scale economies, product differentiation, and the pattern of trade. Am Econ Rev 70:950–959

    Google Scholar 

  • Lenzen M (2001) Errors in conventional and input output—based life—cycle inventories. J Ind Ecol 4:127–148

    Article  Google Scholar 

  • Liska A, Yang H, Bremer V et al (2009) Improvements in life cycle energy efficiency and greenhouse gas emissions of corn ethanol. J Ind Ecol 13:58–74

    Article  CAS  Google Scholar 

  • Nakamura S, Nansai K (2016) Input–output and hybrid LCA. In: Finkbeiner M (ed) Special types of life cycle assessment. Springer

  • Rose A (1995) Input-output economics and computable general equilibrium models. Struct Change Econ Dyn 6:295–304

    Article  Google Scholar 

  • Sandén BA, Karlström M (2007) Positive and negative feedback in consequential life-cycle assessment. J Clean Prod 15:1469–1481

    Article  Google Scholar 

  • Searchinger TD, Heimlich R et al. (2008) Estimating greenhouse gas emissions from soy-based US biodiesel when factoring in emissions from land use change. Lifecycle Carbon Footpr Biofuels, pp 35–45

  • Suh S, Huppes G (2005) Methods for life cycle inventory of a product. J Clean Prod 13:687–697

    Article  Google Scholar 

  • Suh S, Yang Y (2014) On the uncanny capabilities of consequential LCA. Int J Life Cycle Assess 19:1179–1184

    Article  Google Scholar 

  • Suh S, Lenzen M, Treloar G et al (2004) System boundary selection in life-cycle inventories using hybrid approaches. Env Sci Technol 38:657–664

    Article  CAS  Google Scholar 

  • Tyner W, Taheripour F (2008) Biofuels, policy options, and their implications: analyses using partial and general equilibrium approaches. J Agric Food Ind Organ 6:1–18

    Google Scholar 

  • Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42:3508–3513

    Article  CAS  Google Scholar 

  • Wiedmann T, Minx J (2008) A definition of “carbon footprint.” In: Ecological economics research trends. Nova Science Publishers, Hauppauge NY, USA, pp 1–11

  • Yang Y, Campbell JE (2016) Improving attributional life cycle assessment for decision support: the case of local food in sustainable design. J Clean Prod (in review)

  • Yang Y (2016) Two sides of the same coin: consequential life cycle assessment based on the attributional framework. J Clean Prod 127:274–281

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang.

Additional information

Responsible editor: Mary Ann Curran

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y. Does hybrid LCA with a complete system boundary yield adequate results for product promotion?. Int J Life Cycle Assess 22, 456–460 (2017). https://doi.org/10.1007/s11367-016-1256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1256-9

Keywords

Navigation