The International Journal of Life Cycle Assessment

, Volume 21, Issue 12, pp 1789–1798

Environmental impact assessment of centralized municipal wastewater management in Thailand

  • Nantamol Limphitakphong
  • Chanathip Pharino
  • Premrudee Kanchanapiya
WASTEWATER TREATMENT AND MANAGEMENT

DOI: 10.1007/s11367-016-1130-9

Cite this article as:
Limphitakphong, N., Pharino, C. & Kanchanapiya, P. Int J Life Cycle Assess (2016) 21: 1789. doi:10.1007/s11367-016-1130-9
  • 213 Downloads

Abstract

Purpose

Urbanization and industrial development intensify water utilization and wastewater generation. The efficiency of wastewater treatment systems varies and depends on system design and wastewater condition. The research aims to examine seven existing centralized municipal wastewater treatment plants (WWTPs) in Bangkok to discover which system configuration yields the best environmental and economic performance. The degree of environmental impact and operational costs from different system designs were investigated to help select future wastewater treatment systems.

Methods

Life cycle assessment (LCA) has been conducted to evaluate environmental impacts from centralized municipal wastewater treatment systems. Life cycle impact assessment method based on endpoint modeling (LIME) was applied, with three major potential environmental impact categories including eutrophication, global warming, and acidification. All seven centralized municipal WWTPs in Bangkok were investigated as case studies. The system configurations are classified into five types of activated sludge (AS) systems. The contribution of impacts from individual processes in each type of AS system was analyzed. The methodology covered major on-site and off-site operational processes excluding construction and maintenance phases. Average annual data were calculated to develop an inventory dataset. JEMAI-Pro software was utilized in this study to analyze the life cycle impact of the systems.

Results and discussion

The level of environmental impact from a WWTP depends on the configuration of the AS system. The highest potential environmental impact from a municipal WWTP is eutrophication, which is obviously affected by ammonium and phosphorous discharges into water bodies. The vertical loop reactor activated sludge (VLRAS) system yielded the best treatment performance among the five AS sub-systems. The consumption of electricity used to operate the system contributed significantly to global warming potential and correlated considerably with operating costs. Comparing among three system sizes, the large-scale WWTP revealed inefficient electricity consumption, whereas the medium plant provided better performance in chemical use and operating costs.

Conclusions

Centralized municipal WWTPs with capacities ranging from 10 to 350 × 103 m3/day were evaluated with respect to environmental performance and costs during the operating phase. Among all case studies, a medium-scale WWTP with a VLRAS system offered the best operating performance in terms of low environmental impact, resource consumption, and cost. To enhance WWTP management, it is vital to improve the efficiency of electricity consumption in primary and secondary treatment processes and increase wastewater collection efficiency to maximize the plant operating capacity and minimize overall environmental impacts.

Keywords

Activated sludge system Centralized wastewater management Eutrophication Global warming Life cycle assessment Municipal wastewater treatment Thailand 

Abbreviations

AS

Activated sludge

BNRAS

Biological nutrient removal activated sludge

BOD

Biochemical oxygen demand

CASS

Cyclic activated sludge system

COD

Chemical oxygen demand

CSAS

Contact stabilization activated sludge

GHG

Greenhouse gas

LCA

Life cycle assessment

T-N

Total nitrogen

T-P

Total phosphorus

TSAS

Two-stage activated sludge

VLRAS

Vertical loop reactor activated sludge

WWTP

Wastewater treatment plant

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nantamol Limphitakphong
    • 1
  • Chanathip Pharino
    • 1
  • Premrudee Kanchanapiya
    • 2
  1. 1.Department of Environmental Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.Excellent Center for Eco Product (XCEP)National Metal and Materials Technology CenterPathum ThaniThailand