Skip to main content
Log in

Road LCA: the dedicated ECORCE tool and database

  • LCI METHODOLOGY AND DATABASES
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

This paper presents a specific tool called “ECORCE” (French acronym for ECO-comparator applied to Road Construction and Maintenance) dedicated to the road pavement life cycle assessment. This tool aims to reduce the consumption of materials, water, and energy by means of evaluating impacts.

Methods

The environmental assessment has been based on the LCA framework established by the SETAC and ISO 14040 series of standards, as well as by NFP 01010 for French products. The pavement life cycle is divided into the initial construction and maintenance operations. Several functional units can be defined in order to compare roads or road layers that have been designed to offer the same service. The system is built by selecting the processes to be considered during the impact assessment; this selection step relies on lists of main processes, such as road materials, road equipment, and material transport. The keys to building this tool were to specifically propose simple functionalities for road engineers and researchers, allow for quick case study implementation, and display a user-friendly interface. Moreover, the tool takes into account civil engineering practices and provides a set of dedicated data related to road materials, road works, and earthworks. ECORCE also allows easily changing input data (geometry, operations, materials, and transport distances); its output screens and tables offer several approaches to investigating environmental LCA results on roads.

Results and discussion

It becomes possible to compare not only the materials used in a given layer but also the pavement structures composed of several layers using various mixed materials. Lastly, the tool is able to assess initial construction and maintenance policies. Various road structures and their associated traffic conditions may be examined with ECORCE. Results obtained with the tool are detailed in the paper for a highway case study aimed at demonstrating its possible uses. These results highlight that the relative magnitude of impacts from each main process can be analyzed for road design optimization.

Conclusions

The tool reveals that road pavement materials have more impact than other processes such as transport and non-road equipment running within the life cycle. The investigation of standard road practices can thus focus on various alternative materials and pavement structures, depending on the configurable functional units already implemented in the tool, as explained in this paper. The highway case study and accompanying sensitivity testing campaign serve to discuss the benefits of this tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AFNOR NF P01-010 (2004) Qualité environnementale des produits de construction—déclaration environnementale et sanitaire des produits de construction, pp 1-47

  • AFNOR ISO 14040 (2006) Management environnemental – Analyse du cycle de vie – Principes et cadres, Environmental management -- Life cycle assessment -- Requirements and guidelines, in: I.O.f. Standardization (ed), ISO 14040:33-46

  • Athena (1999) Life Cycle Embodied energy and global warming emissions for concrete and asphalt roadways, Athena Sustainable Materials Institute, Canadian Portland Cement Associatio, John Emery Geotechnical Engineering Limited, Venta Glaser & Associates; Jan Consultants, 102

  • ATILH (2011) Module d’informations environnementales de la production de ciments courants. 28 p. Disponible sur : http://www.infociments.fr/developpement-durable/construction-durable/icv-ciments

  • Chappat M, Bilal J (2003) La route écologique du futur. Consommation d’énergie et émission de gaz à effet de serre. Report from COLAS, 40

  • Ecoinvent (2002) Database ecoinvent data v2.2

  • ECORCE (2013) http://ecorce2.ifsttar.fr

  • ECORCE (2014) http://ecorcem.ifsttar.fr

  • ELCD (2003) European Life Cycle Database Core version II. Electricity Mix AC; consumption mix, at consumer; 230V. FR; 2002 / Diesel from crude oil consumption mix at refinery 200 ppm sulphur. EU-15; 2003. http://lca.jrc.ec.europa.eu/lcainfohub/datasetArea.vm (10/2012).

  • EUROBITUME (2011) Life cycle inventory: bitumen, INBS 2-930160-16-0

  • FD P01015 (2006) Qualité environnementale des produits de construction– Fascicule de données énergie et transport

  • Goedkoop M, Spriensma R (2001) The Eco-indicator 99, a damage oriented method for Life Cycle Impact Assessment, methodology report. Pré Consultants B.V. 132

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, van Oers L, Sleeswijk A, Suh S, de Haes HA U, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Life cycle assessment: an operational guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht (NL), Part 1:1-19, Part 2: 1-101

    Google Scholar 

  • Horvath A (2004) Pavement Life Cycle Assessment tool for environment and economic effects (PaLATE). User Manual from Consortium on Green Design and Manufacturing, University of California, Berkeley, 14 p. http://www.recycledmaterials.org/Resources/CD/PaLATE/PaLATE%20User%20Manual.pdf, consulté en janvier 2010

  • Huang Y, Bird R, Heidrich O (2009) Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J Clean Prod 17:283–296

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, ThissenU GJB, Jager T, Kalf D, Van de Meent D (2000) Priority assessment of toxic substances in life cycle assessment. Part I. Calculation of toxicity potentials for 181 substances with the nested multimedia fate exposure and effects model USES-LCA. Chemosphere 41:541–573

    Article  CAS  Google Scholar 

  • IISI (2002) International Iron and Steel Institute. World steel life cycle inventory. Methodology report 1999/2000. Committee on environmental affairs Brussels, October 2002. 90 p, 1999

  • IRF (2010a) International Road Federation, The green path to climate neutral roads – The IRF Greenhouse Gas Calculator, http://www.irfnet.org/geneva/filesupload/Environment/Green%20House%20Gas/GHG_ProjectSheet_website.pdf, consulté le 9 janvier 2010

  • IRF (2010b) International Road Federation, Changer – Calculator for Harmonised Assessment and Normalisation of Greenhouse gas Emissions for Roads, http://www.irfghg.org/faq.php, consulté le 9 janvier 2010

  • Jullien A, Monéron P, Quaranta G, Gaillard D (2006) A study on air emissions from pavement layings made of different reclaimed asphalt rate. Resour Conserv Recycl 47:356–374

    Article  Google Scholar 

  • Jullien A, Cerezo V (2014) Indicators for roads LCA including the pavement durability. In: Transport Research Arena (TRA). Paris, France

  • Lundström K (1998) Influence des chaussées en béton et asphalte sur le milieu. International Symposium on Concrete Road, Lisbon, Portugal, pp 195–202

    Google Scholar 

  • Mroueh UM, Eskola P, Laine-Ylijoki J (2000) Life cycle assessment of road construction, Teilatos, Helsinki (Finland) p. 59+appendix

  • Mroueh UM, Eskola P, Laine-Ylijoki J (2001) Life-cycle impacts of the use of industrial by-products in road and earth construction. Waste Manag 21:271–277

    Article  CAS  Google Scholar 

  • OEET (2011) sous-groupe donnée et groupe infrastructures, Contribution à la réalisation d’une méthodologie d’évaluation environnementale des infrastructures

  • OFRIR (2014) http://ofrir2.ifsttar.fr

  • Peuportier B (2003) Analyse de vie d’un kilomètre de route et comparaison de six variantes. Report from Centre Energétique de l’Ecole de Mines de Paris pour CIM béton, 48

  • PIARC (2002) Association mondiale de la route (www.piarc.org)

  • Pons M-N (2012) Analyse du cycle de vie, comment choisir un logiciel, Editions Copper and Khan Techniques de l’ingénieur, G6350v2:1-15

  • Pontarollo G, Smith T (2001) A life-Cycle Analysis Of the Environmental Impacts of Asphalt and Concrete Road. IRF World Road Congress, Paris

    Google Scholar 

  • Rouwette RR., Schuurmans JH (2001) LCA concrete motorway pavement—an example of the use of JPG LCI data, Belgium, pp 1-43

  • Santero JN, Masanet E, Horvath A (2011) Life-cycle assessment of pavements Part II: Filling the research gaps. Resour Conserv Recycl 55:810–818

    Article  Google Scholar 

  • Sayagh S (2007) Multicriteria approach to the use of alternative materials in pavement construction. Ecole Nationale des Ponts et Chaussées" thesis, defended on 12th December 2007

  • SETAC (1993) Society of Environmental Toxicology and Chemistry Guidelines for Life-Cycle Assessment : a code of practise. Ed. Society of Environmental Toxicology and Chemistry and SETAC Foundation for Environmental Education, Pensacola, USA, pp 1–73

    Google Scholar 

  • SETRA-LCPC (1998) Catalogue des structures types de chaussées neuves, guide technique, pp 1-13

  • Stripple H (2000) Life cycle inventory of asphalt pavements, IVL Swedish Environmental Research Institute, Gothenburg (Sweden), 1-70+appendix

  • Stripple H (2001) Life cycle assessment of road. A pilot study for inventory analysis. Rapport IVL Swedish Environmental Research Institute,1- 96 and appendix

  • UNPG (2011) Module d’informations environnementales de la production de granulats recyclés. Données sous format FDES conformes à la norme NF P 01-010. Union Nationale des Producteurs de Granulats, 17 pp

  • UPC (2010) French Union of lime producers. Life cycle assessment for quicklime and hydrated lime in metropolitan France, 7 pp, http://upchaux.fr/wp-ontent/uploads/2010/06/chaux_vive_conforme_NF.pdf (9/2011)

  • Van Leest AJ, van Hartskamp SB, Meijer JPR (2008) Decision support model for road pavements based on whole life costing, life cycle assessmentand multi-criteria analysis. Report from CROW technology platform, http://therightenvironment.net/Downloads/ISCP08_paper_ISCP9026-decision_Support_Model.PDF, consulté en septembre 2010

  • Ventura A, Monéron P, Jullien A (2008) Environmental impact of a binding course pavement section, with asphalt recycled at varying rates – use of Life Cycle Methodology. Road Mater Pavement Des Spec Issue EATA 9:319–338

    Article  Google Scholar 

  • Ventura A, Dauvergne M, Tamagny P, Jullien A, Feeser A, Goyer S, Baudelot L, Odeon H, Odie L (2011) L’outil logiciel ECORCE Eco-comparateur Routes construction Entretien, Cadre méthodologique et contexte scientifique, Ed LCPC, 2012, CR 55 collection ERLPC, Routes et sécurité routière, 159 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Jullien.

Additional information

Responsible editor: Omer Tatari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jullien, A., Dauvergne, M. & Proust, C. Road LCA: the dedicated ECORCE tool and database. Int J Life Cycle Assess 20, 655–670 (2015). https://doi.org/10.1007/s11367-015-0858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0858-y

Keywords

Navigation