Skip to main content

Advertisement

Log in

Curcumin enhances parental reproductive lifespan and progeny viability in Drosophila melanogaster

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Organismal lifespan is a complex trait that is governed by both its genetic makeup as well as the environmental conditions. The improved socioeconomic condition of humans has led to many lifestyle changes that in turn have altered the demography that includes postponement of procreation. Late age progeny is shown to suffer from many congenital diseases. Hence, there is a need to identify and evaluate natural molecules that could enhance reproductive health span. We have used the well-established model organism, Drosophila melanogaster, and ascertained the consequence of diet supplementation with curcumin. Flies reared on curcumin-supplemented diet had significantly higher lifespan. The progeny of flies reared on curcumin had a higher viability. The activity of a key mitochondrial enzyme—aconitase was significantly higher in flies reared on curcumin-supplemented diet. The results suggest that curcumin can not only correct a key step in the citric acid cycle and help in the release of additional energy but also permanently correct developmental and morphogenetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DR:

Diet restriction

SM:

Standard banana-jaggery medium

SLC:

Standard laboratory conditions

RT:

Room temperature

PC:

Parental fly cage

FC:

Progeny fly cage

FA :

Progeny raised on SM

FB :

Progeny raised on SM supplemented with 5 μM curcumin

FC :

Progeny raised on SM supplemented with 10 μM curcumin

FD :

Progeny raised on SM supplemented with 25 μM curcumin

FE :

Progeny raised on SM supplemented with 50 μM curcumin

References

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arrese EL, Patel RT, Soulages JL (2006) The main triglyceride-lipase from the insect fat body is an active phospholipase A(1): identification and characterization. J Lipid Res 47:2656–2667

    Article  PubMed  CAS  Google Scholar 

  • Barzegar A, Moosavi-Movahedi AA (2011) Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS ONE 6(10):e26012. doi:10.1371/journal.pone.0026012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caesar I, Jonson M, Nilsson KPR, Thor S, Hammarström P (2012) Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic Drosophila. PLoS ONE 7(2):e31424. doi:10.1371/journal.pone.0031424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carey JR (2003) Life span: a conceptual overview. In: Carey JR, Tuljapurkar S (eds) Life span: evolutionary, ecological, and demographic perspectives. Population Council and Development Review 29(Suppl):1–18

  • Carlson KA, Harshman LG (1999) Extended longevity lines of Drosophila melanogaster: characterization of oocyte stages and ovariole numbers as a function of age and diet. J Gerontol A Biol 54:B432–B440

    Article  CAS  Google Scholar 

  • Chandrashekara KT, Shakarad MN (2011) Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 66(9):965–971

  • Chapman T, Partridge L (1996) Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc R Soc Lond B Biol Sci 263:755–759

    Article  CAS  Google Scholar 

  • Chippindale AK, Leroi AM, Kim SB, Rose MR (1993) Phenotypic plasticity and selection in Drosophila life history evolution. 1. Nutrition and the cost of reproduction. J Evol Biol 6:171–193

    Article  Google Scholar 

  • Clark AG, Keith LE (1988) Variation among extracted lines of Drosophila melanogaster in triacylglycerol and carbohydrate storage. Genetics 119:595–607

    PubMed  CAS  PubMed Central  Google Scholar 

  • Das N, Levine RL, Orr WC, Sohal RS (2001) Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J 360:209–216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dong Y, Guha S, Sun X, Cao M, Wang X, Zou S (2012) Nutraceutical interventions for promoting healthy aging in invertebrate models. Oxidative Med Cell Longev. doi:10.1155/2012/718491

    Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Fisher LD, van Belle G (1993) Biostatistics: a methodology for health sciences. Wiley, New York, pp 786–843

    Google Scholar 

  • Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Han YS, Zheng WH, Bastianetto S, Chabot JG, Quirion R (2004) Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 141:997–1005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Handa J, Chandrashekara KT, Kashyap K, Sageena G, Shakarad MN (2014) Gender based disruptive selection maintains body size polymorphism in Drosophila melanogaster. J Biosci 39:609–620. doi:10.1007/s12038-014-9452-x

  • Heinrichsen ET, Zhang RJE, Ngo J, Diop S, Bodmer R, Joiner WJ, Metallo CM, Haddad GG (2013) Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Mol Metabol 3:42–54. doi. 10.1016/j.molmet.2013.10.003

  • Hercus MJ, Hoffmann AA (2000) Maternal and grandmaternal age influence offspring fitness in Drosophila. Proc R Soc Lond B 267:2105–2110

    Article  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  • Iijima K, Zhao L, Shenton C, Iijima-Ando K (2009) Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila. PLoS ONE 4(12):e8498. doi:10.1371/journal.pone.0008498

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy MC, Emptage MH, Dreyer JL, Beinert H (1983) The role of iron in activation-inactivation of aconitase. J Biol Chem 258:11098–11105

    PubMed  CAS  Google Scholar 

  • Kenyon CJ (2010) The genetics of aging. Nature 464:504–512

    Article  PubMed  CAS  Google Scholar 

  • Kern S, Ackermann M, Stearns SC, Kawecki TJ (2001) Decline in offspring viability as a manifestation of aging in Drosophila melanogaster. Evolution 55(9):1822–1831

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M (2010) Curcumin extends lifespan, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13(5):561–570

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Chan HYE, Huang Y, Chen ZY (2007) Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Mol Nutri Food Res 51(5):546–554

    Article  CAS  Google Scholar 

  • Li YM, Chan HYE, Yao XQ, Huang Y, Chen ZY (2008) Green tea catechins and broccoli reduce fat-induced mortality in Drosophila melanogaster. J Nutri Biochem 19(6):376–383

    Article  Google Scholar 

  • Martin I, Grotewiel MS (2006) Oxidative damage and age related functional declines. Mech Ageing Dev 127(5):411–423

    Article  PubMed  CAS  Google Scholar 

  • Mercken EM, Crosby SD, Lamming DW, JeBailey L, Krzysik-Walker S, Villareal DT, Capri M, Franceschi C, Zhang Y, Becker K, Sabatini DM, de Cabo R, Fontana L (2013) Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell 12:645–651

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mokni M, Elkahoui S, Limam F, Amri M, Aouani E (2007) Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem Res 32:981–987

    Article  PubMed  CAS  Google Scholar 

  • Nojima A, Yamashita M, Yoshida Y, Shimizu I, Ichimiya H, Kamimura N, Kobayashi Y, Ohta S, Ishii N, Minamino T (2013) Haploinsufficiency of Akt1 prolongs the lifespan of mice. PLoS ONE 8(7):e69178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nygaard M, Soerensen M, Flachsbart F, Mengel-From J, Tan Q, Schreiber S, Nebel A, Christensen K, Christiansen L (2013) Akt1 fails to replicate as a longevity-associated gene in Danish and German nonagenarians and centenarians. Eu J Human Genet 21:574–577

    Article  CAS  Google Scholar 

  • Palanker L, Tennessen JM, Lam G, Thummel CS (2009) Drosophila HNF4 regulates lipid mobilization and beta-oxidation. Cell Metab 9(3):228–239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37:349–350

    Article  PubMed  CAS  Google Scholar 

  • Partridge L, Gems D (2002) Mechanisms of ageing: public or private? Nature Rev Genet 3:165–175

    Article  PubMed  CAS  Google Scholar 

  • Partridge L, Piper MDW, Mair W (2005) Dietary restriction in Drosophila. Mech Ageing Dev 126:938–950

    Article  PubMed  CAS  Google Scholar 

  • Patel RT, Soulages JL, Hariharasundaram B, Arrese EL (2005) Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem 280:22624–22631

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HYE, Huang Y, Yu H, Chen ZY (2012) Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 47(2):170–178

    Article  PubMed  CAS  Google Scholar 

  • Sahin E, DePinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during aging. Nature 464:520–528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schatten H, Chakrabarti A, Hedrick J (1999) Centrosome and microtubule instability in aging Drosophila cells. J Cell Biochem 74:229–241

    Article  PubMed  CAS  Google Scholar 

  • Shanley DP, Kirkwood TBL (2000) Calorie restriction and aging: a life-history analysis. Evolution 54(3):740–750

    Article  PubMed  CAS  Google Scholar 

  • Shen LR, Xiao F, Yuan P, Chen Y, Gao QK, Parnell LD, Meydani M, Ordovas JM, Li D, Lai CQ (2012) Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila. Age. doi:10.1007/s11357-012-9438-2

    Google Scholar 

  • Soh JW, Marowsky N, Nichols TJ, Rahman AM, Miah T, Sarao P, Khasawneh R, Unnikrishan A, Heydari AR, Silver RB, Arking R (2013) Curcumin is an early-acting stage specific inducer of extended functional longevity in Drosophila. Exp Gerontol 48:229–239

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf JF (1995) Biometry: the principles and practices of statistics in biological sciences. WH Freeman, New York, pp 179–450

    Google Scholar 

  • Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  PubMed  CAS  Google Scholar 

  • Steele JE (1982) Glycogen-phosphorylase in insects. Insect Biochem 12:131–147

    Article  CAS  Google Scholar 

  • Tatar M, Post S, Yu K (2014) Nutrient control of Drosophila longevity. TEM. http://dx.doi.org/10.1016/j.tem.2014.02.006

  • Tu MP, Tatar M (2003) Juvenile diet restriction and the aging and reproduction of adult Drosophila melanogaster. Aging Cell 2:327–333

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39(1):44–84

    Article  CAS  Google Scholar 

  • Vaupel JW (2010) Biodemography of human aging. Nature 464:536–542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Q, Xu J, Rottinghaus GE, Simonyai A, Lubahn D, Sun GY, Sun AY (2002) Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 958:439–447

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Yu S, Simonyai A, Rottinghaus GE, Sun GY, Sun AY (2004) Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem Res 29:2105–2112

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wheeler CT, Alberico T, Sun X, Seeberger J, Laslo M, Spangler E, Kern B, de Cabo R, Zou S (2013) The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. Age 35:69–81. doi:10.1007/s11357-011-9332-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

  • Yarian CS, Toroser D, Sohal RS (2006) Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Age Dev 127:79–84

    Article  CAS  Google Scholar 

  • Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139:149–160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees for their helpful comments on the earlier versions of the manuscript and suggesting additional experiments on pAkt/Akt ratio and fat metabolism related genes. We also thank Dr. Rajesh Rajaiah, Department of Microbiology and Immunology, University of Maryland, USA, for providing us the pAKT antibody; Dr. Rajagopal Raman, Gut Biology Laboratory, Department of Zoology, University of Delhi; Dr. K. Natarajan, Ambedkar Centre for Biomedical Research, University of Delhi for providing the chemicals, buffers, and instruments required in Akt/pAkt, AKHR, and CG9510 Western blot and PCR experiments; and Ms. Nalini Mishra and numerous research trainees for their assistance in the research. MS thanks the University of Delhi and Council of Scientific and Industrial Research, Government of India, for financial assistance. SP thanks the University Grants Commission, Government of India, for DSKPDF fellowship.

Conflict of interest

The authors declare no conflict of interest.

Author contributions

K.T.C., S.P., and M.S. designed the research; K.T.C and S.P. performed the research; and K.T.C., S.P., and M.S. analyzed the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Shakarad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 83 kb)

High resolution image (TIFF 81 kb)

Fig. S2

(GIF 73 kb)

High resolution image (TIFF 75 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrashekara, K.T., Popli, S. & Shakarad, M.N. Curcumin enhances parental reproductive lifespan and progeny viability in Drosophila melanogaster . AGE 36, 9702 (2014). https://doi.org/10.1007/s11357-014-9702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9702-8

Keywords

Navigation