Skip to main content

Advertisement

Log in

The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Nutraceuticals are known to have numerous health and disease preventing properties. Recent studies suggest that extracts containing cranberry may have anti-aging benefits. However, little is known about whether and how cranberry by itself promotes longevity and healthspan in any organism. Here we examined the effect of a cranberry only extract on lifespan and healthspan in Caenorhabditis elegans. Supplementation of the diet with cranberry extract (CBE) increased the lifespan in C. elegans in a concentration-dependent manner. Cranberry also increased tolerance of C. elegans to heat shock, but not to oxidative stress or ultraviolet irradiation. In addition, we tested the effect of cranberry on brood size and motility and found that cranberry did not influence these behaviors. Our mechanistic studies indicated that lifespan extension induced by CBE requires the insulin/IGF signaling pathway and DAF-16. We also found that cranberry promotes longevity through osmotic stress resistant-1 (OSR-1) and one of its downstream effectors, UNC-43, but not through SEK-1, a component of the p38 MAP kinase pathway. However, SIR-2.1 and JNK signaling pathways are not required for cranberry to promote longevity. Our findings suggest that cranberry supplementation confers increased longevity and stress resistance in C. elegans through pathways modulated by daf-16 and osr-1. This study reveals the anti-aging property of widely consumed cranberry and elucidates the underpinning mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Wahab BA, Abd El-Aziz SM (2012) Ginkgo biloba protects against intermittent hypoxia-induced memory deficits and hippocampal DNA damage in rats. Phytomed Int J Phytother Phytopharmacol 19:444–450

    Article  CAS  Google Scholar 

  • Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab: TEM 11:327–332

    Article  PubMed  CAS  Google Scholar 

  • Ai J, Duan J, Lv X, Chen M, Yang Q, Sun H, Li Q, Xiao Y, Wang Y, Zhang Z, Tan R, Liu Y, Zhao D, Chen T, Yang Y, Wei Y, Zhou Q (2010) Overexpression of FoxO1 causes proliferation of cultured pancreatic beta cells exposed to low nutrition. Biochemistry 49:218–225

    Article  PubMed  CAS  Google Scholar 

  • Apostolidis E, Kwon YI, Shetty K (2006) Potential of cranberry-based herbal synergies for diabetes and hypertension management. Asia Pac J Clin Nutr 15:433–441

    PubMed  CAS  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  PubMed  CAS  Google Scholar 

  • Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Bodet C, Chandad F, Grenier D (2006) Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J Dent Res 85:235–239

    Article  PubMed  CAS  Google Scholar 

  • Bodet C, Chandad F, Grenier D (2007a) Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E production by lipopolysaccharide-activated gingival fibroblasts. Eur J Oral Sci 115:64–70

    Article  PubMed  CAS  Google Scholar 

  • Bodet C, Chandad F, Grenier D (2007b) Inhibition of host extracellular matrix destructive enzyme production and activity by a high-molecular-weight cranberry fraction. J Periodontal Res 42:159–168

    Article  PubMed  CAS  Google Scholar 

  • Boyd O, Weng P, Sun X, Alberico T, Laslo M, Obenland DM, Kern B, Zou S (2011) Nectarine promotes longevity in Drosophila melanogaster. Free Radic Biol Med 50:1669–1678

    Article  PubMed  CAS  Google Scholar 

  • Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102:3105–3110

    Article  PubMed  CAS  Google Scholar 

  • Burger O, Weiss E, Sharon N, Tabak M, Neeman I, Ofek I (2002) Inhibition of Helicobacter pylori adhesion to human gastric mucus by a high-molecular-weight constituent of cranberry juice. Crit Rev Food Sci Nutr 42:279–284

    Article  PubMed  CAS  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    Article  PubMed  CAS  Google Scholar 

  • Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L (2002) Dietary restriction in long-lived dwarf flies. Science 296:319

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Dillin A (2008) The insulin paradox: aging, proteotoxicity and neurodegeneration. Nature reviews. Neuroscience 9:759–767

    PubMed  CAS  Google Scholar 

  • de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501

    Article  PubMed  Google Scholar 

  • de Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A (2007) Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB J 21:3431–3441

    Article  PubMed  Google Scholar 

  • DeFeudis FV, Drieu K (2000) Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 1:25–58

    Article  PubMed  CAS  Google Scholar 

  • Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  PubMed  CAS  Google Scholar 

  • Fukushima T, Yamada K, Isobe A, Shiwaku K, Yamane Y (1993) Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I. Exp Toxicol Pathol Off J Ges Toxikologische Pathol 45:345–349

    Article  CAS  Google Scholar 

  • Glenn CF, Chow DK, David L, Cooke CA, Gami MS, Iser WB, Hanselman KB, Goldberg IG, Wolkow CA (2004) Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J Gerontol A Biol Sci Med Sci 59:1251–1260

    Article  PubMed  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  PubMed  CAS  Google Scholar 

  • Hart AC (2006) Behavior, wormbook, the C. elegans research community, wormbook, doi/10.1895/wormbook.1.87.1, http://www.wormbook.org

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  PubMed  CAS  Google Scholar 

  • Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588

    Article  PubMed  CAS  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393

    PubMed  CAS  Google Scholar 

  • Hosono R, Sato Y, Aizawa SI, Mitsui Y (1980) Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Exp Gerontol 15:285–289

    Article  PubMed  CAS  Google Scholar 

  • Howell AB (2007) Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol Nutr Food Res 51:732–737

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 101:8084–8089

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, Conley WL, Keller ML (1988) Long-lived lines of Caenorhabditis elegans can be used to establish predictive biomarkers of aging. Exp Gerontol 23:281–295

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  PubMed  CAS  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90:8905–8909

    Article  PubMed  CAS  Google Scholar 

  • Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11:1950–1957

    Article  PubMed  CAS  Google Scholar 

  • Lee TH, Mun JY, Han SM, Yoon G, Han SS, Koo HS (2009) DIC-1 over-expression enhances respiratory activity in Caenorhabditis elegans by promoting mitochondrial cristae formation. Genes Cells Devoted Mol Cell Mech 14:319–327

    Article  CAS  Google Scholar 

  • Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20:2131–2136

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Gen 28:139–145

    Article  CAS  Google Scholar 

  • Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278:30843–30848

    Article  PubMed  CAS  Google Scholar 

  • Lithgow GJ, White TM, Hinerfeld DA, Johnson TE (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol 49:B270–B276

    Article  PubMed  CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485S

    PubMed  CAS  Google Scholar 

  • Martorell P, Forment JV, de Llanos R, Monton F, Llopis S, Gonzalez N, Genoves S, Cienfuegos E, Monzo H, Ramon D (2011) Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. J Agric Food Chem 59:2077–2085

    Article  PubMed  CAS  Google Scholar 

  • Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97

    PubMed  CAS  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  PubMed  CAS  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    Article  PubMed  CAS  Google Scholar 

  • Neto CC (2007a) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664

    Article  PubMed  CAS  Google Scholar 

  • Neto CC (2007b) Cranberry and its phytochemicals: a review of in vitro anticancer studies. J Nutr 137:186S–193S

    PubMed  CAS  Google Scholar 

  • Neto CC, Amoroso JW, Liberty AM (2008) Anticancer activities of cranberry phytochemicals: an update. Mol Nutr Food Res 52(Suppl 1):S18–S27

    PubMed  Google Scholar 

  • Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 102:4494–4499

    Article  PubMed  CAS  Google Scholar 

  • Pappas E, Schaich KM (2009) Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability. Crit Rev Food Sci Nutr 49:741–781

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HY, Huang Y, Yu H, Chen ZY (2012) Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 47:170–178

    Article  PubMed  CAS  Google Scholar 

  • Pietsch K, Saul N, Menzel R, Sturzenbaum SR, Steinberg CE (2009) Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10:565–578

    Article  PubMed  CAS  Google Scholar 

  • Pietsch K, Saul N, Chakrabarti S, Sturzenbaum SR, Menzel R, Steinberg CE (2011) Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12:329–347

    Article  PubMed  CAS  Google Scholar 

  • Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550–555

    Article  PubMed  CAS  Google Scholar 

  • Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Gen 37:894–898

    Article  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:15998–16003

    Article  PubMed  CAS  Google Scholar 

  • Samuel VT, Choi CS, Phillips TG, Romanelli AJ, Geisler JG, Bhanot S, McKay R, Monia B, Shutter JR, Lindberg RA, Shulman GI, Veniant MM (2006) Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 55:2042–2050

    Article  PubMed  CAS  Google Scholar 

  • Saul N, Pietsch K, Menzel R, Sturzenbaum SR, Steinberg CE (2010) The longevity effect of tannic acid in Caenorhabditis elegans: disposable soma meets hormesis. J Gerontol A Biol Sci Med Sci 65:626–635

    Article  PubMed  Google Scholar 

  • Seeram NP, Adams LS, Hardy ML, Heber D (2004) Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem 52:2512–2517

    Article  PubMed  CAS  Google Scholar 

  • Shukitt-Hale B, Carey AN, Jenkins D, Rabin BM, Joseph JA (2007) Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging. Neurobiol Aging 28:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Sobota AE (1984) Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infections. J Urol 131:1013–1016

    PubMed  CAS  Google Scholar 

  • Solomon A, Bandhakavi S, Jabbar S, Shah R, Beitel GJ, Morimoto RI (2004) Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics 167:161–170

    Article  PubMed  CAS  Google Scholar 

  • Steinberg D, Feldman M, Ofek I, Weiss EI (2004) Effect of a high-molecular-weight component of cranberry on constituents of dental biofilm. J Antimicrob Chemother 54:86–89

    Article  PubMed  CAS  Google Scholar 

  • Strayer A, Wu Z, Christen Y, Link CD, Luo Y (2003) Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB J 17:2305–2307

    PubMed  CAS  Google Scholar 

  • Sun X, Seeberger J, Alberico T, Wang C, Wheeler CT, Schauss AG, Zou S (2010) Acai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45:243–251

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    Article  PubMed  CAS  Google Scholar 

  • van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8:440–450

    Article  PubMed  Google Scholar 

  • Verma AK, Johnson JA, Gould MN, Tanner MA (1988) Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res 48:5754–5758

    PubMed  CAS  Google Scholar 

  • Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9:605–615

    Article  PubMed  CAS  Google Scholar 

  • Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139

    Article  PubMed  CAS  Google Scholar 

  • Walker EB, Barney DP, Mickelsen JN, Walton RJ, Mickelsen RA Jr (1997) Cranberry concentrate: UTI prophylaxis. J Fam Pract 45:167–168

    PubMed  CAS  Google Scholar 

  • Wilson T, Porcari JP, Harbin D (1998) Cranberry extract inhibits low density lipoprotein oxidation. Life Sci 62:PL381–PL386

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5:59–68

    Article  PubMed  CAS  Google Scholar 

  • Wu TY, Chen CP, Jinn TR (2011) Traditional Chinese medicines and Alzheimer’s disease. Taiwan J Obstet Gynecol 50:131–135

    Article  PubMed  Google Scholar 

  • Xue YL, Ahiko T, Miyakawa T, Amino H, Hu F, Furihata K, Kita K, Shirasawa T, Sawano Y, Tanokura M (2011) Isolation and Caenorhabditis elegans lifespan assay of flavonoids from onion. J Agric Food Chem 59:5927–5934

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Fukushima T (1993) Mechanism of cytotoxicity of paraquat. II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Experimental and toxicologic pathology. Off J Ges Toxikologische Pathol 45:375–380

    Article  CAS  Google Scholar 

  • Yokoyama K, Fukumoto K, Murakami T, Harada S, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S (2002) Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS letters 516:53–57

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Hu J, Perez E, Phillips D, Kim W, Ghaedian R, Napora JK, Zou S (2011) Effects of long-term cranberry supplementation on endocrine pancreas in aging rats. J Gerontol A Biol Sci Med Sci 66:1139–1151

    Article  PubMed  Google Scholar 

  • Ziv E, Hu D (2010) Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev 10:201–204

    Article  PubMed  Google Scholar 

  • Zou S, Sinclair J, Wilson MA, Carey JR, Liedo P, Oropeza A, Kalra A, de Cabo R, Ingram DK, Longo DL, Wolkow CA (2007) Comparative approaches to facilitate the discovery of prolongevity interventions: effects of tocopherols on lifespan of three invertebrate species. Mech Ageing Dev 128:222–226

    Article  PubMed  CAS  Google Scholar 

  • Zou S, Carey JR, Liedo P, Ingram DK, Yu B, Ghaedian R (2010) Prolongevity effects of an oregano and cranberry extract are diet dependent in the Mexican fruit fly (Anastrepha ludens). J Gerontol A Biol Sci Med Sci 65:41–50

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Caenorhabditis elegans strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). We are grateful to members of the Dong laboratory for the helpful discussions. We thank H. Knap for the assistance with qPCR, Y. Wei and A. Tietje for the help with the fluoremeter, T. Bruce for the assistance with microscopy. We especially thank S. Smith and M. Bonaccorsi for the help with worm maintenance and reagents preparation, and R. Ghaedian for providing cranberry extract. We thank E. Spangler and A. Brown for editing this paper. This work was supported by the Creative Inquiry fund at Clemson University to Y.D. and M.C and the Intramural Research Program at the National Institute on Aging, NIH to S.Z.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sige Zou or Yuqing Dong.

About this article

Cite this article

Guha, S., Cao, M., Kane, R.M. et al. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1 . AGE 35, 1559–1574 (2013). https://doi.org/10.1007/s11357-012-9459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9459-x

Keywords

Navigation