Skip to main content
Log in

Troponin T nuclear localization and its role in aging skeletal muscle

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Troponin T (TnT) is known to mediate the interaction between Tn complex and tropomyosin (Tm), which is essential for calcium-activated striated muscle contraction. This regulatory function takes place in the myoplasm, where TnT binds Tm. However, recent findings of troponin I and Tm nuclear translocation in Drosophila and mammalian cells imply other roles for the Tn–Tm complex. We hypothesized that TnT plays a nonclassical role through nuclear translocation. Immunoblotting with different antibodies targeting the NH2- or COOH-terminal region uncovered a pool of fast skeletal muscle TnT3 localized in the nuclear fraction of mouse skeletal muscle as either an intact or fragmented protein. Construction of TnT3–DsRed fusion proteins led to the further observation that TnT3 fragments are closely related to nucleolus and RNA polymerase activity, suggesting a role for TnT3 in regulating transcription. Functionally, overexpression of TnT3 fragments produced significant defects in nuclear shape and caused high levels of apoptosis. Interestingly, nuclear TnT3 and its fragments were highly regulated by aging, thus creating a possible link between the deleterious effects of TnT3 and sarcopenia. We propose that changes in nuclear TnT3 and its fragments cause the number of myonuclei to decrease with age, contributing to muscle damage and wasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TnT3:

Troponin T3

Tm:

Tropomyosin

ActD:

Actinomycin D

Pol:

Polymerase

PML:

Promyelocytic leukemia

References

  • Alway SE, Siu PM (2008) Nuclear apoptosis contributes to sarcopenia. Exerc Sport Sci Rev 36(2):51–57

    Article  PubMed  Google Scholar 

  • Amin MA, Matsunaga S, Ma N, Takata H, Yokoyama M, Uchiyama S, Fukui K (2007) Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells. Biochem Biophys Res Commun 360(2):320–326

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433(7021):77–83

    Article  PubMed  CAS  Google Scholar 

  • Barbieri M, Ferrucci L, Ragno E, Corsi A, Bandinelli S, Bonafe M, Olivieri F, Giovagnetti S, Franceschi C, Guralnik JM, Paolisso G (2003) Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons. Am J Physiol Endocrinol Metab 284(3):E481–E487

    PubMed  CAS  Google Scholar 

  • Biesiadecki BJ, Jin JP (2002) Exon skipping in cardiac troponin T of turkeys with inherited dilated cardiomyopathy. J Biol Chem 277(21):18459–18468

    Article  PubMed  CAS  Google Scholar 

  • Biesiadecki BJ, Chong SM, Nosek TM, Jin JP (2007) Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry 46(5):1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Birbrair A, Wang ZM, Messi ML, Enikolopov GN, Delbono O (2011) Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS One 6(2):e16816

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7):574–585

    Article  PubMed  CAS  Google Scholar 

  • Brooks SV, Faulkner JA (1991) Maximum and sustained power of extensor digitorum longus muscles from young, adult, and old mice. J Gerontol 46(1):B28–B33

    Article  PubMed  CAS  Google Scholar 

  • Brotto MA, Biesiadecki BJ, Brotto LS, Nosek TM, Jin JP (2006) Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility. Am J Physiol Cell Physiol 290(2):C567–C576

    Article  PubMed  CAS  Google Scholar 

  • Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS, Leeuwenburgh C, Pahor M, Manini TM (2010) Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev 9(4):369–383

    Article  PubMed  Google Scholar 

  • Carlson ME, Conboy IM (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell 6(3):371–382

    Article  PubMed  CAS  Google Scholar 

  • Chandra M, Montgomery DE, Kim JJ, Solaro RJ (1999) The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments. J Mol Cell Cardiol 31(4):867–880

    Article  PubMed  CAS  Google Scholar 

  • Dalby MJ, Gadegaard N, Herzyk P, Sutherland D, Agheli H, Wilkinson CD, Curtis AS (2007) Nanomechanotransduction and interphase nuclear organization influence on genomic control. J Cell Biochem 102(5):1234–1244

    Article  PubMed  CAS  Google Scholar 

  • Dargelos E, Brule C, Combaret L, Hadj-Sassi A, Dulong S, Poussard S, Cottin P (2007) Involvement of the calcium-dependent proteolytic system in skeletal muscle aging. Exp Gerontol 42(11):1088–1098

    Article  PubMed  CAS  Google Scholar 

  • Dargelos E, Poussard S, Brule C, Daury L, Cottin P (2008) Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie 90(2):359–368

    Article  PubMed  CAS  Google Scholar 

  • Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340(2):330–343

    Article  PubMed  CAS  Google Scholar 

  • Degens H, Alway SE (2003) Skeletal muscle function and hypertrophy are diminished in old age. Muscle Nerve 27(3):339–347

    Article  PubMed  Google Scholar 

  • Degens H, Alway SE (2006) Control of muscle size during disuse, disease, and aging. Int J Sports Med 27(2):94–99

    Article  PubMed  CAS  Google Scholar 

  • Delbono O (2011) Expression and regulation of excitation–contraction coupling proteins in aging skeletal muscle. Curr Aging Sci (in press)

  • DiFranco M, Neco P, Capote J, Meera P, Vergara JL (2006) Quantitative evaluation of mammalian skeletal muscle as a heterologous protein expression system. Protein Expr Purif 47(1):281–288

    Article  PubMed  CAS  Google Scholar 

  • Dirks A, Leeuwenburgh C (2002) Apoptosis in skeletal muscle with aging. Am J Physiol Regul Integr Comp Physiol 282(2):R519–R527

    PubMed  CAS  Google Scholar 

  • Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S (2000) Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol Biol Cell 11(8):2705–2717

    Article  PubMed  CAS  Google Scholar 

  • Feng HZ, Biesiadecki BJ, Yu ZB, Hossain MM, Jin JP (2008) Restricted N-terminal truncation of cardiac troponin T: a novel mechanism for functional adaptation to energetic crisis. J Physiol 586(14):3537–3550

    Article  PubMed  CAS  Google Scholar 

  • Fox AH, Lamond AI (2010) Paraspeckles. Cold Spring Harb Perspect Biol 2(7):a000687

    Article  PubMed  Google Scholar 

  • Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68:687–728

    Article  PubMed  CAS  Google Scholar 

  • Gil C, Falques A, Sarro E, Cubi R, Blasi J, Aguilera J, Itarte E (2011) Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release. FEBS Lett 585(2):414–420

    Article  PubMed  CAS  Google Scholar 

  • Gomes AV, Guzman G, Zhao J, Potter JD (2002) Cardiac troponin T isoforms affect the Ca2+ sensitivity and inhibition of force development. Insights into the role of troponin T isoforms in the heart. J Biol Chem 277(38):35341–35349

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E, Delbono O (2001) Age-dependent fatigue in single intact fast- and slow fibers from mouse EDL and soleus skeletal muscles. Mech Ageing Dev 122(10):1019–1032

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E, Messi ML, Delbono O (2000) The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging. J Membr Biol 178(3):175–183

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80(2):853–924

    PubMed  CAS  Google Scholar 

  • Guarente L (1997) Link between aging and the nucleolus. Genes Dev 11(19):2449–2455

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D (2006) Nucleolus: from structure to dynamics. Histochem Cell Biol 125(1–2):127–137

    Article  PubMed  CAS  Google Scholar 

  • Itano N, Okamoto S, Zhang D, Lipton SA, Ruoslahti E (2003) Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc Natl Acad Sci USA 100(9):5181–5186

    Article  PubMed  CAS  Google Scholar 

  • Jeong EM, Wang X, Xu K, Hossain MM, Jin JP (2009) Nonmyofilament-associated troponin T fragments induce apoptosis. Am J Physiol Heart Circ Physiol 297(1):H283–H292

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Moreno R, Wang ZM, Gerring RC, Delbono O (2008) Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 94(8):3178–3188

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Moreno R, Wang ZM, Messi ML, Delbono O (2010) Sarcoplasmic reticulum Ca2+ depletion in adult skeletal muscle fibres measured with the biosensor D1ER. Pflugers Arch 459(5):725–735

    Article  PubMed  CAS  Google Scholar 

  • Jin JP, Root DD (2000) Modulation of troponin T molecular conformation and flexibility by metal ion binding to the NH2-terminal variable region. Biochemistry 39(38):11702–11713

    Article  PubMed  CAS  Google Scholar 

  • Jin JP, Zhang Z, Bautista JA (2008) Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr 18(2):93–124

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, Pak SM, Laroche T, Gasser SM, Guarente L (1997) Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89(3):381–391

    Article  PubMed  CAS  Google Scholar 

  • Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B (1990) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140(1):41–54

    Article  PubMed  CAS  Google Scholar 

  • Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113(3):370–378

    PubMed  CAS  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4(8):605–612

    Article  PubMed  CAS  Google Scholar 

  • Lannergren J, Westerblad H (1987) The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. J Physiol 390:285–293

    PubMed  CAS  Google Scholar 

  • Larsson L (1978) Morphological and functional characteristics of the ageing skeletal muscle in man. A cross-sectional study. Acta Physiol Scand Suppl 457:1–36

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Ansved T (1995) Effects of ageing on the motor unit. Prog Neurobiol 45(5):397–458

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Chen B, Chen J, Lou G, Chen S, Zhou D (2008) Fast skeletal muscle troponin I is a co-activator of estrogen receptor-related receptor alpha. Biochem Biophys Res Commun 369(4):1034–1040

    Article  PubMed  CAS  Google Scholar 

  • Malatesta M, Perdoni F, Muller S, Zancanaro C, Pellicciari C (2009) Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing. Eur J Histochem 53(2):97–106

    PubMed  CAS  Google Scholar 

  • Malatesta M, Perdoni F, Muller S, Pellicciari C, Zancanaro C (2010) Pre-mRNA processing is partially impaired in satellite cell nuclei from aged muscles. J Biomed Biotechnol 2010:410405

    Article  PubMed  Google Scholar 

  • Marzetti E, Privitera G, Simili V, Wohlgemuth SE, Aulisa L, Pahor M, Leeuwenburgh C (2010) Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. ScientificWorldJournal 10:340–349

    Article  PubMed  CAS  Google Scholar 

  • Morse CI, Thom JM, Davis MG, Fox KR, Birch KM, Narici MV (2004) Reduced plantarflexor specific torque in the elderly is associated with a lower activation capacity. Eur J Appl Physiol 92(1–2):219–226

    Article  PubMed  Google Scholar 

  • Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99(3):1050–1055

    Article  PubMed  Google Scholar 

  • Narici MV, Maganaris CN (2006) Adaptability of elderly human muscles and tendons to increased loading. J Anat 208(4):433–443

    Article  PubMed  Google Scholar 

  • Ogut O, Jin JP (1996) Expression, zinc-affinity purification, and characterization of a novel metal-binding cluster in troponin T: metal-stabilized alpha-helical structure and effects of the NH2-terminal variable region on the conformation of intact troponin T and its association with tropomyosin. Biochemistry 35(51):16581–16590

    Article  PubMed  CAS  Google Scholar 

  • Olson MO (2004) Sensing cellular stress: another new function for the nucleolus? Sci STKE 2004 (224):pe10

  • Onambele GL, Narici MV, Maganaris CN (2006) Calf muscle-tendon properties and postural balance in old age. J Appl Physiol 100(6):2048–2056

    Article  PubMed  Google Scholar 

  • Pan BS, Gordon AM, Potter JD (1991) Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin. J Biol Chem 266(19):12432–12438

    PubMed  CAS  Google Scholar 

  • Payne AM, Zheng Z, Gonzalez E, Wang ZM, Messi ML, Delbono O (2004) External Ca(2+)-dependent excitation–contraction coupling in a population of ageing mouse skeletal muscle fibres. J Physiol 560(Pt 1):137–155

    Article  PubMed  CAS  Google Scholar 

  • Perry SV (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19(6):575–602

    Article  PubMed  CAS  Google Scholar 

  • Pinol-Roma S, Dreyfuss G (1992) Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355(6362):730–732

    Article  PubMed  CAS  Google Scholar 

  • Reiser PJ, Greaser ML, Moss RL (1992) Developmental changes in troponin T isoform expression and tension production in chicken single skeletal muscle fibres. J Physiol 449:573–588

    PubMed  CAS  Google Scholar 

  • Renganathan M, Messi ML, Delbono O (1998) Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. J Biol Chem 273(44):28845–28851

    Article  PubMed  CAS  Google Scholar 

  • Rice KM, Blough ER (2006) Sarcopenia-related apoptosis is regulated differently in fast- and slow-twitch muscles of the aging F344/N×BN rat model. Mech Ageing Dev 127(8):670–679

    Article  PubMed  CAS  Google Scholar 

  • Runge M, Rittweger J, Russo CR, Schiessl H, Felsenberg D (2004) Is muscle power output a key factor in the age-related decline in physical performance? A comparison of muscle cross section, chair-rising test and jumping power. Clin Physiol Funct Imaging 24(6):335–340

    Article  PubMed  Google Scholar 

  • Sahota VK, Grau BF, Mansilla A, Ferrus A (2009) Troponin I and tropomyosin regulate chromosomal stability and cell polarity. J Cell Sci 122(Pt 15):2623–2631

    Article  PubMed  CAS  Google Scholar 

  • Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16(5):2395–2413

    Article  PubMed  CAS  Google Scholar 

  • Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D (2010) Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS One 5(10):e13307

    Article  PubMed  Google Scholar 

  • Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10(1):94–99

    Article  PubMed  CAS  Google Scholar 

  • Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129(1):13–31

    Article  PubMed  CAS  Google Scholar 

  • Siu PM, Pistilli EE, Murlasits Z, Alway SE (2006) Hindlimb unloading increases muscle content of cytosolic but not nuclear Id2 and p53 proteins in young adult and aged rats. J Appl Physiol 100(3):907–916

    Article  PubMed  CAS  Google Scholar 

  • Snijders T, Verdijk LB, van Loon LJ (2009) The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev 8(4):328–338

    Article  PubMed  Google Scholar 

  • Szczesna D, Potter JD (2002) The role of troponin in the Ca(2+)-regulation of skeletal muscle contraction. Results Probl Cell Differ 36:171–190

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Zheng Z, Wang ZM, Payne AM, Messi ML, Delbono O (2009) Increased CaVbeta1A expression with aging contributes to skeletal muscle weakness. Aging Cell 8(5):584–594

    Article  PubMed  CAS  Google Scholar 

  • Thomas CH, Collier JH, Sfeir CS, Healy KE (2002) Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA 99(4):1972–1977

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR (2010) Sarcopenia. Clin Geriatr Med 26(2):331–346

    Article  PubMed  Google Scholar 

  • Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58:447–481

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson BE, Irving D, Rebeiz JJ (1973) Total numbers of limb motor neurones in the human lumbosacral cord and an analysis of the accuracy of various sampling procedures. J Neurol Sci 20(3):313–327

    Article  PubMed  CAS  Google Scholar 

  • van Koningsbruggen S, Dirks RW, Mommaas AM, Onderwater JJ, Deidda G, Padberg GW, Frants RR, van der Maarel SM (2004) FRG1P is localised in the nucleolus, Cajal bodies, and speckles. J Med Genet 41(4):e46

    Article  PubMed  Google Scholar 

  • Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292(1):E151–E157

    Article  PubMed  CAS  Google Scholar 

  • Visintin R, Amon A (2000) The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 12(6):752

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jin JP (1997) Primary structure and developmental acidic to basic transition of 13 alternatively spliced mouse fast skeletal muscle troponin T isoforms. Gene 193(1):105–114

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jin JP (1998) Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. Biochemistry 37(41):14519–14528

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Jin JP (2011) Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function. Arch Biochem Biophys 505(2):144–154

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Zaal KJ, Sheridan J, Mehta A, Gundersen GG, Ralston E (2009) Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion. J Cell Sci 122(Pt 9):1401–1409

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Jin JP, Root DD (2004) Binding of calcium ions to an avian flight muscle troponin T. Biochemistry 43(9):2645–2655

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Biesiadecki BJ, Jin JP (2006) Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mu-calpain cleavage. Biochemistry 45(38):11681–11694

    Article  PubMed  CAS  Google Scholar 

  • Zimber A, Nguyen QD, Gespach C (2004) Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell Signal 16(10):1085–1104

    Article  PubMed  CAS  Google Scholar 

  • Zinna EM, Yarasheski KE (2003) Exercise treatment to counteract protein wasting of chronic diseases. Curr Opin Clin Nutr Metab Care 6(1):87–93

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health/National Institute on Aging (AG13934, AG033385, AG15820, and FIRCA-BB TW008091) and the Muscular Dystrophy Association (MDA #33149) to Osvaldo Delbono and the Wake Forest Claude D. Pepper Older Americans Independence Center (P30-AG21332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Delbono.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Construction of TnT3/DsRed cDNAs by PCR and subcloning. Primers targeting different regions (arrows) of the mouse TnT3 cDNA were designed with HindIII or SacII restriction enzyme cutting sequences overhanging at the 5′ end of each primer. PCR products were subcloned into pDsRed2-N1 multiple cloning sites (MCS) after HindIII and SacII digestion to finally construct TnFL/DsRed, TnNT/DsRed, TnM/DsRed, and TnCT/DsRed, respectively (TIFF 5576 kb)

Fig. S2

Flowchart representing sample preparation for whole cell lysis, cytosolic, myofibrillar, and nuclear fractions from mouse TA skeletal muscle. Fractions were subsequently analyzed by western blotting (Fig. 1a) to confirm the successful separation of nuclear fraction from myofibrillar fraction and the presence of endogenous nuclear TnT3. Trichloroacetic acid (TCA) was used to precipitate and concentrate the total protein from W, C, and N fractions (TIFF 1245 kb)

Fig. S3

Subcellular localization of N-terminally GFP-tagged TnT3 in C2C12 cells. When transiently overexpressed in the C2C12 myoblasts, GFP/TnFL shows similar nuclear localization to that of TnFL/DsRed. Scale bar, 20 μm (TIFF 1503 kb)

Fig. S4

TnFL/DsRed, but not TnCT/DsRed, showed a striated distribution pattern in addition to its myonuclear localization when transiently overexpressed in myofibers. FVB fibers transiently transfected with TnFL/DsRed or TnCT/DsRed were isolated and imaged under fluorescence microscope. By overexposure, with the nuclear DsRed saturated, only the TnFL/DsRed transfected fibers showed a striated fluorescent pattern. Scale bar, 50 μm (TIFF 6511 kb)

Fig. S5

DsRed overexpression in mouse FDB muscle fiber. Control DsRed protein diffuses throughout the muscle fiber. Scale bar, 50 μm (TIFF 4968 kb)

Fig. S6

TnCT/DsRed and TnFL/DsRed overexpression induces apoptosis in NIH3T3 fibroblasts. As with C2C12, NIH3T3 cells were analyzed with a FACSCalibur flow cytometer 48 h posttransfection. Data were collected on at least 100,000 freshly stained cells. Representative analyses of 7-AAD and Annexin V staining (B) followed pregating on DsRed (A). B Results were plotted as fluorescence intensity of Annexin V as a function of fluorescence intensity of 7-AAD. The numbers in each square are explained for Fig. 8. C The percent of total apoptotic cells was obtained by adding early and late apoptotic cells (TIFF 6362 kb)

About this article

Cite this article

Zhang, T., Birbrair, A., Wang, ZM. et al. Troponin T nuclear localization and its role in aging skeletal muscle. AGE 35, 353–370 (2013). https://doi.org/10.1007/s11357-011-9368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9368-4

Keywords

Navigation