Skip to main content
Log in

Morphologic assessment of oxidative damage: A review

  • Published:
Journal of the American Aging Association Aims and scope Submit manuscript

Abstract

Biochemical studies have indicated changes in anti-oxidant enzyme activities and increased oxidative damage products in many disease states, particularly aging and diseases associated with aging, such as neurodegenerative diseases and cancer. To try to determine cellular and subcellular localization of oxidative damage, our laboratory has developed quantitative light and electron microscopy immunogold techniques using specific antibodies to oxidative damage products. Results from studies of different pathologic processes are presented, illustrating that both localization and quantitation of oxidative damage products is possible. These analyses give important insights into the nature of various pathologic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sohal, R.S., and Weindruch, R.: Oxidative stress, caloric restriction, and aging. Science, 273: 59–63, 1996.

    PubMed  CAS  Google Scholar 

  2. Chance, B., Sies, H., and Boveris, A.: Hydroperoxide metabolism is mammalian organs. Physiol. Rev., 59: 527–605, 1979.

    PubMed  CAS  Google Scholar 

  3. Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J., and Lal, H.: Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev., 74: 121–133, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. Pansarasa, O., Bertorelli, L., Vecchiet, J., Felzani, G., and Marzatico, F.: Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic. Biol. Med., 27: 617–622, 1999.

    Article  PubMed  CAS  Google Scholar 

  5. Mecocci, P., Fano, G., Fulle, S., MacGarvey, U., Shinobu, L., Polidori, M.C., Cherubini, A., Vecchiet, J., Senin, U., and Beal, M.F.: Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Biol. Med., 26: 303–308, 1999.

    Article  PubMed  CAS  Google Scholar 

  6. Pugh, T.D., Oberley, T.D., and Weindruch, R.: Dietary intervention at middle age: caloric restriction but not dehydroepiandrosterone sulfate increases life span and lifetime cancer incidence in mice. Cancer Res., 59: 1642–1648, 1999.

    PubMed  CAS  Google Scholar 

  7. Yan, T., Jiang, X., Zhang, H.J., Li, S., and Oberley, L.W.: Use of commercial antibodies for detection of primary antioxidant enzymes. Free Radic. Biol. Med., 25: 688–693, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Uchida, K., Itakura, K., Kawakishi, S., Hiai, H., Toyokuni, S., and Stadtman, E.R.: Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch. Biochem. Biophys., 324: 241–248, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Uchida, K., Szweda, L.I., Chae, H-Z., and Stadtman, E.R.: Immunochemical detection of 4-hydroxy-2-nonenal protein adducts in oxidized hepatocytes. Proc. Natl. Acad. Sci. USA, 90: 8742–9846, 1993.

    PubMed  CAS  Google Scholar 

  10. Toyokuni, S., Miyake, N., Hiai, H., Hagiwara, M., Kawakishi, S., Osawa, T., and Uchida, K.: The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett., 359: 189–191, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Toyokuni, S., Tanaka, T., Hattori, Y., Nishiyama, Y., Yoshida, A., Uchida, K., Ochi, H., and Osawa, T.: Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilo-triacetate-induced renal carcinogenesis model. Lab. Invest., 76: 365–374, 1997.

    PubMed  CAS  Google Scholar 

  12. MacMillen-Crow, L.A., Crow, J.P., Kerby, J.D., Beckman, J.S., and Thompson, J.A.: Nitration and inactivation of manganese superoxide dismutase in chronic rejection of renal allograft. Proc. Natl. Acad. Sci. USA, 93: 11853–11858, 1996.

    Google Scholar 

  13. Smith, M.A., Sayre, L.M., Anderson, V.E., Harris, P.L.R., Beal, M.F., Kowall, N., and Perry, G.: Cytochemical determination of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem., 46: 731–735, 1998.

    PubMed  CAS  Google Scholar 

  14. Toyokuni, S.: Reactive oxygen species-induced molecular damage and its application in pathology. Path. Int., 49: 401–410, 1999.

    Google Scholar 

  15. Kondo, S., Toyokuni, S., Iwasa, Y., Tanake, T., Onodera, H., Hiai, H., and Imamura M.: Persistent oxidative stress in human colorectal carcinoma, but not in adenoma. Free Radic. Biol. Med., 27: 401–410, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Coursin, D.B., Cihla, H.P., Oberley, T.D., and Oberley, L.W.: Immunolocalization of antioxidant enzymes and isozymes of glutathione S-transferase in normal rat lung. Am. J. Physiol., 263: L679–L691, 1992.

    PubMed  CAS  Google Scholar 

  17. Weisiger, R.A., and Fridovich, I.: Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial location. J. Biol. Chem., 248: 4793–4796, 1973.

    PubMed  CAS  Google Scholar 

  18. McCord, J.M., and Fridovich, I.: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055, 1969.

    PubMed  CAS  Google Scholar 

  19. Marklund, S.L., Holme, E., and Hellner, L.: Superoxide dismutase in extracellular fluids. Clin. Chim. Acta, 126: 41–51, 1982.

    Article  PubMed  CAS  Google Scholar 

  20. Peeters-Joris, C., Vandervoorde, A.M., and Bandhuin, P.: Subcellular localization of superoxide dismutase in rat liver. Biochem. J., 150: 31–39, 1975.

    PubMed  CAS  Google Scholar 

  21. Muse, K.E., Oberley, T.D., Sempf, J.M., and Oberley, L.W.: Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem. J., 26: 734–753, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Vertechy, M., Cooper, M.B., Ghirardi, O., and Ramacci, M.T.: Antioxidant enzyme activities in heart and skeletal muscle of rats of different ages. Exp. Gerontol., 24:211–218, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Ji L.L., Dillon, D., and Wu, E.: Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am. J. Physiol., 258: R918–R923, 1990.

    PubMed  CAS  Google Scholar 

  24. Oh-Ishi, S., Kisaki, T., Yamashita, H., Nagata, N., Suzuki, K., Taniguchi, N., and Ohno, H.: Alterations of superoxide dismutase iso-enzyme activity, content, and mRNA expression with aging in skeletal muscle. Mech. Ageing Dev., 84: 65–76, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Oberley, T.D., Oberley, L.W., Slattery, A.F., Lauchner, L.J., and Elwell, J.H.: Immunohistochemical localization of antioxidant enzymes in adult Syrian hamster tissues and during kidney development. Am. J. Path., 137: 199–214, 1990.

    PubMed  CAS  Google Scholar 

  26. Oberley, T.D., Oberley, L.W., Slattery, A.F., and Elwell, J.H.: Immunohistochemical localization of glutathione S-transferase and glutathione peroxidase in adult hamster tissues and during kidney development. Am. J. Path., 139: 355–369, 1991.

    PubMed  CAS  Google Scholar 

  27. Oberley, T.D., Friedman, A.L., Moser, R., and Siegel, F.L.: Effects of lead administration on developing rat kidney. II. Functional, morphologic, and immunohistochemical studies. Toxicol. and Applied Pharmacol., 131: 94–107, 1995.

    Article  CAS  Google Scholar 

  28. Daggett, D.A., Oberley, T.D., Nelson, S.A., Wright, L.S., Kornguth, S.E., and Siegel, F.L.: Effects of lead on rat kidney and liver: GST expression and oxidative stress. Toxicology, 128: 191–206, 1998.

    Article  PubMed  CAS  Google Scholar 

  29. Arai, M., Imai, H., Koumura, T., Yoshida, M., Emoto, K., Umeda, M., Chiba, N., and Nakagawa, Y.: Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J. Biol. Chem., 274: 4924–4933, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Bulitta, C., Ganea, C., Fahimi, H.D., and Volkl, A.: Cytoplasmic and peroxisomal catalases of the guinea pig liver: evidence for two distinct proteins. Biochim. et Biophys. Acta, 1293: 55–62, 1996.

    Google Scholar 

  31. Swaroop, M., Bian, J., Aviram, M., Duan, H., Bisgaier, C.L., Loo, J.A., and Sun, Y.: Expression, purification, and biochemical characterization of SAG, a ring finger redox-sensitive protein. Free Radic. Biol. Med., 27: 193–202, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Oberley, T.D., and Oberley, L.W.: Antioxidant enzyme levels in cancer. Histol. Histopath., 12: 525–535, 1997.

    CAS  Google Scholar 

  33. Tsai, L., Szweda, P.A., Vinogradova, O., and Szweda, L.I.: Structural characterization and immunochemical detection of a fluorophore derived from 4-hydroxy-2-nonenal and lysine. Proc. Natl. Acad. Sci. USA, 95: 7975–7980, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Zainal, T.A., Weindruch, R., Szweda, L.I., and Oberley, T.D.: Localization of 4-hydroxy-2-nonenal-modified proteins in kidney following iron overload. Free Radic. Biol. Med., 26:1181–1193, 1999.

    Article  PubMed  CAS  Google Scholar 

  35. Brennick, J.B., O’Connell, J.V., Dickerson, G.R., and Young, R.H.: Lipofuscin accumulation (so-called “melanosis”) of the prostate. Am. J. Surg. Path., 18: 446–454, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Amin, M.B., and Bostwick, D.B.: Pigment in prostatic epithelium and adenocarcinoma: a potential source of diagnostic confusion with seminal vesicle epithelium. Modern Pathol., 9: 791–795, 1996.

    CAS  Google Scholar 

  37. Oberley, T.D., Toyokuni, S., and Szweda, L.I.: Localization of hydroxynonenal protein adducts in normal human kidney and selected human kidney cancers. Free Radic. Biol. Med., 27: 693–703, 1999.

    Article  Google Scholar 

  38. Ahn, B., Han, B.S., Kim, D.J., and Oshima, H.: Immunohistochemical localization of inducible nitric oxide synthase and 3-nitrotyrosine in rat liver tumors induced by N-nitrosodiethylamine. Carcinogenesis, 20: 1337–1344, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E.R., and Mizuno, Y.: Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 93: 2696–2701, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Montine, K.S., Olson, S.J., Amarnath, V., Whetsell, W. Jr., Graham, D.J., and Montine, T.J.: Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J. Path., 150: 437–443, 1997.

    PubMed  CAS  Google Scholar 

  41. Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H-X., Chen, W., Zhai, P., Sufit, R.L., and Siddique, T.: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 264: 1772–1775, 1995.

    Google Scholar 

  42. Flood, D.G., Reaume, A.G., Gruner, J.A., Hoffman, E.K., Hirsch, J.D., Lin, Y-G., Dorfman, K.S., and Scott, R.W.: Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. Am. J. Path., 155: 663–672, 1999.

    PubMed  CAS  Google Scholar 

  43. Anson, R.M., Senturker, S., Dizdaroglu, M., and Bohr, V.: Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. Free Radic. Biol. Med., 27: 456–452, 1999.

    Article  PubMed  CAS  Google Scholar 

  44. Ando, Y., Nyhlin, N., Suhr, O., Holmgren, G., Uchida, K., Sahly, M.E., Yamashita, T., Terasaki, H., Makamura, M., Uchino, M., and Ando, M.: Oxidative stress is found in amyloid deposits in systemic amyloidosis. Biochem. Biophys. Res. Comm., 232: 497–502, 1997.

    Article  PubMed  CAS  Google Scholar 

  45. Ohhira, M., Ohtake, T., Matsumoto, A., Saito, H., Ikuta, K., Fujimoto, Y., Ono, M., Toyokuni, S., Kohgo, Y.: Immunohistochemical detection of 4-hydroxy-2-nonenal-modified-protein adducts in human alcoholic liver disease. Alcohol Clin. Exp. Res., 22: S145–S149, 1997.

    Google Scholar 

  46. Kageyama, F., Kobayashi, Y., Koide, S.: Enhanced lipid peroxidation in chronic hepatitis C. Jpn. Pharmacol. Ther., 26: S405–S408, 1998.

    Google Scholar 

  47. Lee, C-K., Klopp, R.G., Weindruch, R., and Prolla, T.A.: Gene expression profile of aging and its retardation by caloric restriction. Science, 285: 1390–1393, 1999.

    Article  PubMed  CAS  Google Scholar 

  48. Bates, P.C., and Millward, D.J. Myofibrillar protein turnover. Biochem. J., 214: 587–592, 1983.

    PubMed  CAS  Google Scholar 

  49. Kerver, E.D., Vogels, I.M., Bosch, K.S., Vreeling-Sindelavarova, H., van den Munckhof, R.J.M., and Frederiks, W.M.: In situ detection of spontaneous superoxide anion and singlet oxygen production by mitochondria in rat liver and small intestine. Histochem. J., 29: 229–237, 1997.

    Article  PubMed  CAS  Google Scholar 

  50. Uchida, K., Shiraishi, M., Naito, Y., Torii, Y., Nakamura, Y., and Osawa, T.: Activation of stress signaling pathways by the end product of lipid peroxidation: 4-hydroxy-2-nonenal is a potent inducer of intracellular peroxide production. J. Biol. Chem., 274: 2234–2242, 1999.

    Article  PubMed  CAS  Google Scholar 

  51. Eiserich, J.P., Estevez, A.G., Bamberg, T.V., Ye, Y.Z., Chumley, P.H., Beckman, J.S., and Freeman, B.A.: Microtubule dysfunction by posttranslational nitrotyrosination of a-tubulin: A nitric oxide-dependent mechanism of cellular injury. Proc. Natl. Acad. Sci. USA, 96: 6365–6370, 1999.

    Article  PubMed  CAS  Google Scholar 

  52. Yen, H-C., Oberley, T.D., Vichitbanda, S., Ho, Y-S., and St. Clair, D.K.: The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J. Clin. Invest., 98: 1253–1260, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Yen, H-C., Oberley, T.D., Gairola, C.G., Szweda, L.I., and St. Clair, D.K.: Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice. Arch. Biochem. Biophys., 362: 59–66, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Oberley, T.D., Zainal, T.A. Morphologic assessment of oxidative damage: A review. AGE 23, 17–24 (2000). https://doi.org/10.1007/s11357-000-0003-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-000-0003-z

Keywords

Navigation