Skip to main content

Advertisement

Log in

Trace and macro elements in the femoral bone as indicators of long-term environmental exposure to toxic metals in European brown bear (Ursus arctos) from Croatia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We explored the long-term accumulation of aluminium, strontium, cadmium and lead in the compact and trabecular bone of the femoral epiphysis, metaphysis and diaphysis in 41 brown bears (Ursus arctos) from Croatia. Also, we assessed their influence on macro and trace elements (sodium, magnesium, phosphorus, potassium, calcium, manganese, iron, cobalt, copper, zinc and barium) in bears’ bone. There were no sex differences in element levels in general, while age was associated with bone length and levels of all elements, except for cadmium. Elements had different levels depending on the part of the bone sampled. More pronounced differences were observed between the compact and trabecular regions, with higher levels of majority of elements found in compact bone. Moderate to high associations (Spearman coefficient, rS = 0.59–0.97) were confirmed between calcium and potassium, magnesium, phosphorus, manganese, cobalt, zinc, strontium and lead. Lead levels in the bone were below those known to cause adverse health effects, but in 4 of 41 animals they exceeded baseline levels for domestic animals. The femoral bone of the brown bear reflected the accumulative nature of lead and strontium well, as it did the impairment of bone-forming essential element levels associated with these two elements. However, the distribution pattern of elements along the bone was not uniform, so additional care should be taken when choosing on the part of the bone sampled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2004) Toxicological profile for strontium. U.S. Department of Health and Human Services, Public Health Service, Atlanta https://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=656&tid=120. Accessed 14 Dec 2017

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2007) Toxicological profile for lead. U.S. Department of Health and Human Services, Public Health Service, Atlanta https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=96&tid=22. Accessed 26 May 2017

    Google Scholar 

  • Aufderheide AC, Wittmers LE Jr (1992) Selected aspects of the spatial distribution of lead in bone. Neurotoxicology 13(4):809–819

    CAS  Google Scholar 

  • Barbosa F, Tanus-Santos JE, Fernanda Gerlach F, Parsons PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113(12):1669–1674

    Article  CAS  Google Scholar 

  • Bartareau TM, Cluff HD, Larter NC (2011) Body length and mass growth of the brown bear (Ursus arctos) in northern Canada: model selection based on information theory and ontogeny of sexual size dimorphism. Can J Zool 89(11):1128–1135

    Article  Google Scholar 

  • Berglund M, Akesson A, Bjellerup P, Vahter M (2000) Metal-bone interactions. Toxicol Lett 112-113:219–225

    Article  CAS  Google Scholar 

  • Bhattacharyya MH (2009) Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol 238(3):258–265

    Article  CAS  Google Scholar 

  • Bjorå R, Falch JA, Staaland H, Nordsletten L, Gjengedal E (2001) Osteoporosis in the Norwegian moose. Bone 29(1):70–73

    Article  Google Scholar 

  • Blagojević J, Jovanović V, Stamenković G, Jojić V, Bugarski-Stanojević V, Adnađević T, Vujošević M (2012) Age differences in bioaccumulation of heavy metals in populations of the black-striped field mouse, Apodemusagrarius (Rodentia, Mammalia). Int J Environ Res Public Health 6(4):1045–1052

    Google Scholar 

  • Bronner F (2008) Metals in bone: aluminum, boron, cadmium, chromium, lanthanum, lead, silicon, and strontium. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology, 3rd edn. Academic, New York, pp 515–531

    Chapter  Google Scholar 

  • Brzóska MM, Moniuszko-Jakoniuk J (2005) Bone metabolism of male rats chronically exposed to cadmium. Toxicol Appl Pharmacol 207:195–211

    Article  CAS  Google Scholar 

  • Brzóska MM, Rogalska J, Kupraszewicz E (2011) The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: a study in a rat model of moderate and relatively high human exposure. Toxicol Appl Pharmacol 250(3):327–335

    Article  CAS  Google Scholar 

  • Budis H, Kalisinska E, Lanocha N, Kosik-Bogacka DI (2013) The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758). Biol Trace Elem Res 155:361–369

    Article  CAS  Google Scholar 

  • Castellino N, Castellino P (1995) Lead metabolism. In: Castellino N, Castellino P, Sannolo N (eds) Inorganic lead exposure: metabolism and intoxication. CRC, Boca Raton, pp 168–179

    Google Scholar 

  • Chappard D, Bizot P, Mabilleau G, Hubert L (2016) Aluminum and bone: review of new clinical circumstances associated with Al3+ deposition in the calcified matrix of bone. Morphologie 100(329):95–105

    Article  CAS  Google Scholar 

  • Chen X, Zhu G, Shao C, Jin T, Tan M, Gu S, Zhang Y, Xiao H (2011) Effects of cadmium on bone microstructure and serum tartrate-resistant acid phosphatase 5b in male rats. Exp Biol Med (Maywood) 236(11):1298–1305

    Article  CAS  Google Scholar 

  • Collins JF, Prohaska JR, Knutson MD (2010) Metabolic crossroads of iron and copper. Nutr Rev 68(3):133–147

    Article  Google Scholar 

  • Cretacci Y, Parsons PJ (2010) Localized accumulation of lead within and among bones from lead-dosed goats. Environ Res 110(1):26–32

    Article  CAS  Google Scholar 

  • Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28(4):446–453

    Article  CAS  Google Scholar 

  • Daugaard-Petersen T, Langebæk R, Rigét FF, Letcher RJ, Hyldstrup L, Jensen JB, Bechshoft T, Wiig Ø, Jenssen BM, Pertoldi C, Lorenzen ED, Dietz R, Sonne C (2018) Persistent organic pollutants, skull size and bone density of polar bears (Ursus maritimus) from East Greenland 1892–2015 and Svalbard 1964–2004. Environ Res 162:74–80

    Article  CAS  Google Scholar 

  • Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 32:86–106

    Article  CAS  Google Scholar 

  • Demesko J, Markowski J, Słaba M, Hejduk J, Minias P (2018) Age-related patterns in trace element content vary between bone and teeth of the European roe deer (Capreolus capreolus). Arch Environ Contam Toxicol 74(2):330–338

    Article  CAS  Google Scholar 

  • Einhorn TA (1996) The bone organ system: form and function. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, 1st edn. Academic, San Diego, pp 3–22

    Google Scholar 

  • Gamberg M, Braune BM (1999) Contaminant residue levels in arctic wolves (Canis lupus) from the Yukon Territory, Canada. Sci Total Environ 243-244:329–338

    Article  CAS  Google Scholar 

  • Gerhardsson L (2004) Lead. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment: occurrence, analysis and biological relevance, 2nd edn. Wiley, Weinheim, pp 879–901

    Chapter  Google Scholar 

  • Hellström HO, Mjöberg B, Mallmin H, Michaëlsson K (2005) The aluminum content of bone increases with age, but is not higher in hip fracture cases with and without dementia compared to controls. Osteoporos Int 16:1982–1988

    Article  CAS  Google Scholar 

  • Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, Boston

    Google Scholar 

  • Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 106(1):1–8

    Article  CAS  Google Scholar 

  • Huber Đ, Jakšić Z, Frković A, Štahan Ž, Kusak J, Majnarić D, Grubešić M, Kulić B, Sindičić M, Majić Skrbinšek A, Lay V, Ljuština M, Zec D, Laginja R, Francetić I (2008) Brown bear management plan for the Republic of Croatia. Ministry of Regional Development; Forestry and Water Management; Directorate for Hunting and Ministry of Culture; Directorate for the Protection of Nature, Zagreb (in Croatian)

    Google Scholar 

  • Jee WSS (1983) The skeletal tissues. In: Weiss L (ed) Histology: cell and tissue biology, 5th edn. Elsevier Biomedical, New York, pp 206–254

    Google Scholar 

  • Kierdorf U, Stoffels D, Kierdorf H (2014) Element concentrations and element ratios in antler and pedicle bone of yearling red deer (Cervus elaphus) stags—a quantitative X-ray fluorescence study. Biol Trace Elem Res 162(1–3):124–133

    Article  CAS  Google Scholar 

  • Knott EJ, Bunnefeld N, Huber Đ, Reljić S, Kereži V, Milner-Gulland EJ (2014) The potential impacts of changes in bear hunting policy for hunting organisations in Croatia. Eur J Wildl Res 60(1):85–97

    Article  Google Scholar 

  • Kostial K (1983) Specific features of metal absorption in suckling animals. In: Clarkson TW, Nordberg GF, Sager PR (eds) Reproductive and developmental toxicity of metals. Springer, Boston, pp 727–744

    Chapter  Google Scholar 

  • Kuiters AT (1996) Accumulation of cadmium and lead in red deer and wild boar at the Veluwe, the Netherlands. Vet Q 18(Sup3):134–135

    Article  Google Scholar 

  • Lanocha N, Kalisinska E, Kosik-Bogacka DI, Budis H, Noga-Deren K (2012) Trace metals and micronutrients in bone tissues of the red fox Vulpes vulpes (L., 1758). Acta Theriol 57:233–244

    Article  Google Scholar 

  • Lanocha N, Kalisinska E, Kosik-Bogacka DI, Budis H, Sokolowski S, Bohatyrewicz A (2013) Comparison of metal concentrations in bones of long-living mammals. Biol Trace Elem Res 152(2):195–203

    Article  CAS  Google Scholar 

  • Lazarus M, Orct T, Blanuša M, Vicković I, Šoštarić B (2008) Toxic and essential metal concentrations in four tissues of red deer (Cervus elaphus) from Baranja, Croatia. Food Addit Contam Part A 25(3):270–283

    Article  CAS  Google Scholar 

  • Lazarus M, Prevendar Crnić A, Bilandžić N, Kusak J, Reljić S (2014) Cadmium, lead, and mercury exposure assessment among Croatian consumers of free-living game. Arh Hig Rada Toksikol 65:281–292

    Article  CAS  Google Scholar 

  • Lazarus M, Sekovanić A, Orct T, Reljić S, Kusak J, Jurasović J, Huber Đ (2017) Apex predatory mammals as bioindicator species in environmental monitoring of elements in Dinaric Alps (Croatia). Environ Sci Poll Res 24(30):23977–23991

    Article  CAS  Google Scholar 

  • Lazarus M, Sekovanić A, Orct T, Reljić S, Jurasović J, Huber Đ (2018) Sexual maturity and life stage influences toxic metal accumulation in Croatian brown bears. Arch Environ Contam Toxicol 74(2):339–348

    Article  CAS  Google Scholar 

  • Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41(3):137–144

    Article  CAS  Google Scholar 

  • Ma WC (2011) Lead in mammals. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations, 2nd edn. CRC, Boca Raton, pp 595–608

    Chapter  Google Scholar 

  • Medvedev N (1995) Concentrations of cadmium, lead and sulphur in tissues of wild, forest reindeer from north-west Russia. Environ Poll 90(1):1–5

    Article  CAS  Google Scholar 

  • Martiniaková M, Omelka R, Janc̆ová A, Stawarz R, Formicki G (2010) Heavy metal content in the femora of yellow-necked mouse (Apodemus flavicollis) and wood mouse (Apodemus sylvaticus) from different types of polluted environment in Slovakia. Environ Monit Assess 171:651–660

    Article  CAS  Google Scholar 

  • Martiniaková M, Omelka R, Janc̆ová A, Stawarz R, Formicki G (2011) Concentrations of selected heavy metals in bones and femoral bone structure of bank (Myodes glareolus) and common (Microtus arvalis) voles from different polluted biotopes in Slovakia. Arch Environ Contam Toxicol 60:524–532

    Article  CAS  Google Scholar 

  • Millán J, Mateo R, Taggart MA, López-Bao JV, Viota M, Monsalve L, Camarero PR, Blázquez E, Jiménez B (2008) Levels of heavy metals and metalloids in critically endangered Iberian lynx and other wild carnivores from southern Spain. Sci Total Environ 399:193–201

    Article  CAS  Google Scholar 

  • Nganvongpanit K, Buddhachat K, Piboon P, Klinhom S (2016) The distribution of elements in 48 canine compact bone types using handheld X-ray fluorescence. Biol Trace Elem Res 174:93–104

    Article  CAS  Google Scholar 

  • Nielsen SP (2004) The biological role of strontium. Bone 35:583–588

    Article  CAS  Google Scholar 

  • Pemmer B, Roschger A, Wastl A, Hofstaetter JG, Wobrauschek P, Simon R, Thaler HW, Roschger P, Klaushofer K, Streli C (2013) Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 57:184–193

    Article  CAS  Google Scholar 

  • Puls R (1994) Mineral levels in animal health. Diagnostic data. Sherpa International, Clearbrook

    Google Scholar 

  • Rodríguez-Estival J, Álvarez-Lloret P, Rodríguez-Navarro AB, Mateo R (2013) Chronic effects of lead (Pb) on bone properties in red deer and wild boar: relationship with vitamins A and D3. Environ Poll 174:142–149

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1991) Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals. Environ Poll 71(2–4):329–375

    Article  CAS  Google Scholar 

  • Schwalfenberg GK, Genuis S (2015) Vitamin D, essential minerals, and toxic elements: exploring interactions between nutrients and toxicants in clinical medicine. Sci World J 2015:318595

    Article  CAS  Google Scholar 

  • Stoneberg RP, Jonkel CJ (1966) Age determination of black bears by cementum layers. J Wildl Manag 30:411–414

    Article  Google Scholar 

  • Sun X, Wang H, Huang W, Yu H, Shen T, Song M, Han Y, Li Y, Zhu Y (2017) Inhibition of bone formation in rats by aluminum exposure via Wnt/β-catenin pathway. Chemosphere 176:1–7

    Article  CAS  Google Scholar 

  • Takata MK, Saiki M, Sumita NM, Saldiva PHN, Pasqualucci CA (2005) Trace element determinations in human cortical and trabecular bones. J Radioanal Nucl Chem 264(1):5–8

    Article  CAS  Google Scholar 

  • Tataruch F (1993) Vergleichende Untersuchungen zur Schwermetallbelastung von Rot-, Reh- und Gamswild. Z Jagdwiss 39(3):190–200

    Google Scholar 

  • Tøndevold E, Eliasen P (1982) Blood flow rates in canine cortical and cancellous bone measured with 99Tcm-labelled human albumin microspheres. Acta Orthop Scand 53(1):7–11

    Article  Google Scholar 

  • Vighi M, Borrell AI, Aguilar A (2017) Bone as a surrogate tissue to monitor metals in baleen whales. Chemosphere 171:81–88

    Article  CAS  Google Scholar 

  • Vihnanek Lazarus M, Sekovanić A, Kljaković-Gašpić Z, Orct T, Jurasović J, Kusak J, Reljić S, Huber Đ (2013) Cadmium and lead in grey wolf liver samples: optimization of a microwave-assisted digestion method. Arh Hig Rada Toksikol 64:395–403

    Article  CAS  Google Scholar 

  • Wiechuła D, Jurkiewicz A, Loska K (2008) An assessment of natural concentrations of selected metals in the bone tissues of the femur head. Sci Total Environ 406:161–167

    Article  CAS  Google Scholar 

  • Wittmers LE Jr, Aufderheide AC, Wallgren J, Rapp G Jr, Alich A (1988) Lead in bone. IV. Distribution of lead in the human skeleton. Arch Environ Health 43(6):381–391

    Article  CAS  Google Scholar 

  • Young B, Heath JW (2000) Skeletal tissues. In: Young B, Heath JW (eds) Wheater’s functional histology. Churchill Livingstone, Edinburgh, pp 172–190

    Google Scholar 

  • Zipkin I (1970) The inorganic composition of bones and teeth. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Springer, Boston, pp 69–89

    Chapter  Google Scholar 

Download references

Acknowledgements

The help of local hunters and experts with the collection of samples is gratefully acknowledged. The authors wish to thank Dr. J. Kusak for creating Fig. 1, Dr. S. Cvijetić Avdagić and anonymous reviewers for valuable comments on the manuscript and Mr. Makso Herman for language editing.

Funding

This study was funded by the Ministry of Science, Education and Sports of the Republic of Croatia through Institutional Funding made available to the Institute for Medical Research and Occupational Health. The Veterinary Faculty team was supported by the “LIFE DINALP BEAR” project (grant No. LIFE13 NAT/SI/000550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Lazarus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarus, M., Orct, T., Reljić, S. et al. Trace and macro elements in the femoral bone as indicators of long-term environmental exposure to toxic metals in European brown bear (Ursus arctos) from Croatia. Environ Sci Pollut Res 25, 21656–21670 (2018). https://doi.org/10.1007/s11356-018-2296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2296-4

Keywords

Navigation