Skip to main content
Log in

Molecularly imprinted membranes (MIMs) for selective removal of polychlorinated biphenyls (PCBs) in environmental waters: fabrication and characterization

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Molecularly imprinted membranes (MIMs) with selective removal properties for polychlorinated biphenyls (PCBs) were prepared through the phase inversion technique. The MIMs were obtained from casting the viscous solutions of molecularly imprinted polymers (MIPs), polysulfone (PSf), and N-methyl-2-pyrrolidone (NMP) as the casting solvent. Different membranes were prepared at different concentration of MIPs and PSf. The resulting MIMs were characterized by atomic force microscope (AFM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Moreover, the performance of the membranes was evaluated by determining and interpreting the rejection (%), flux (F), permeability coefficient (P), permselectivity factor ( α PCB/DDT or anthracene), and enrichment factors of PCBs, dichlorodiphenyltrichloroethane (p,p′-DDT), and anthracene from model contaminated water using the dead-end filtration cell. Molecularly imprinted membrane prepared with 18 wt% PSf and 20 wt% MIP 4 exhibited a well-defined porous structure, which was accompanied by enhanced PCB enrichment. Furthermore, molecularly imprinted membrane showed good enrichment factors for PCBs even from spiked natural water samples of Hartbeespoort dam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barton BF., Reeve JL, McHugh AJ (1997) Observations on the dynamics of nonsolvent-induced phase inversion. Polym Sci Polym Phys 35(4): 569–585. doi:10.1002/(SICI)1099–0488(199703)35:4<569::AID-POLB5>3.0.CO;2-L.

  • Battershill JM (1994) Review of the safety assessment of polychlorinated biphenyls (PCBs) with particular reference to reproductive toxicity. Hum Exp Toxicol 13(9):581–597

    Article  CAS  Google Scholar 

  • Bouwman H (2004) South Africa and the Stockholm Convention on persistent organic pollutants: science policy. S Afr J Sci 100:323–328

    Google Scholar 

  • de Kock AC, Randall RM (1984) Organochlorine insecticide and polychlorinated biphenyl residues in eggs of coastal birds from the Eastern Cape, South Africa. Environ Pollut A 35(3):193–201. doi:10.1016/0143-1471(84)90202-2

    Article  Google Scholar 

  • Deng B, Yu M, Yang X, Zhang B, Li L, Xie L, Li J, Lu X (2010) Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization. J Memb Sci 350(1–2):252–258. doi:10.1016/j.memsci.2009.12.035

    Article  CAS  Google Scholar 

  • Donato L, Greco MC, Drioli E (2011) Preparation of molecularly imprinted membranes and evaluation of their performance in the selective recognition of dimethoate. Desalin Water Treat 30(1–3):171–177. doi:10.5004/dwt.2011.1960

    Article  CAS  Google Scholar 

  • Elimelech M, Zhu X, Childress AE, Hong S (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Memb Sci 127(1):101–109. doi:10.1016/S0376-7388(96)00351-1

    Article  CAS  Google Scholar 

  • Faroon OM, Keith LS, Smith-Simon C, De Rosa CT Keith (2003) Concise International Chemical Assessment Document 55. Polychlorinated biphenyls: human health aspects. IPCS Concise Int. Chem. Assess. Geneva, World Health Organization. http://www.who.int/pcs/pubs/pub_cicad.htm. Accessed 2 May 2016.

  • Ficai DM, Ficai A, Voicu G, Vasile BS, Guran C, Andronescu E (2010) Polysulfone based membranes with desired pores characteristics. Matr Plastice 47:24–27

    CAS  Google Scholar 

  • Ghosh U, Weber AS, Jensen JN, Smith JR (1999) Granular activated carbon and biological activated carbon treatment of dissolved and sorbed polychlorinated biphenyls. Water Environ Res 71(2):232–240

    Article  CAS  Google Scholar 

  • Grobler D, Badenhorst JE, Kempster PL (1996) PCBs, chlorinated hydrocarbon pesticides and chlorophenols in the Isipingo Estuary, Natal, Republic of South Africa. Mar Pollut Bull 32(7):572–575

    Article  CAS  Google Scholar 

  • Guillen GR, Pan Y, Li M, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50(7):3798–3817. doi:10.1021/ie101928r

    Article  CAS  Google Scholar 

  • Guillen GR, Ramon GZ, Kavehpour HP, Kaner RB, Hoek EMV (2013) Direct microscopic observation of membrane formation by nonsolvent induced phase separation. J Memb Sci 431:212–220. doi:10.1016/j.memsci.2012.12.031

    Article  CAS  Google Scholar 

  • Guo Y, Kannan K (2015) Analytical methods for the measurement of legacy and emerging persistent organic pollutants in complex sample matrices. In: Zeng E (ed) Comprehensive analytical chemistry. Elsevier, Amsterdam, pp 1–56. doi:10.1016/B978-0-444-63299-9.00001-6

    Google Scholar 

  • Ji W, Ma X, Xie H, Chen L, Wang X, Zhao H, Huang L (2014) Molecularly imprinted polymers with synthetic dummy template for simultaneously selective removal and enrichment of ginkgolic acids from Ginkgo biloba L. leaves extracts. J Chromatogr A 1368:44–51. doi:10.1016/j.chroma.2014.09.070

    Article  CAS  Google Scholar 

  • Jordaan I, Pieters R, Quinn LP, Giesy JP, Jones PD, Murphy MB, Bouwman H (2007) The contribution of dioxin-like compounds from platinum mining and processing samples. Miner Eng 20(2):191–193. doi:10.1016/j.mineng.2006.07.005

    Article  CAS  Google Scholar 

  • Kampire E, Rubidge G, Adams JB (2015) Distribution of polychlorinated biphenyl residues in sediments and blue mussels (Mytilus galloprovincialis) from Port Elizabeth Harbour, South Africa. Mar Pollut Bull 91(1):173–179. doi:10.1016/j.marpolbul.2014.12.008

    Article  CAS  Google Scholar 

  • Kawasaki S-I, Oe T, Anjoh N, Nakamori T, Suzuki A, Arai K (2006) Practical supercritical water reactor for destruction of high concentration polychlorinated biphenyls (PCB) and dioxin waste streams. Process Saf Environ 84(4):317–324. doi:10.1205/psep.05187

    Article  CAS  Google Scholar 

  • Kesting RE (1985) Phase inversion membranes. In: Materials science of synthetic membranes, ACS Symp Ser, Irvine, CA 92715, 269: 131–164. Chapter doi: 10.1021/bk-1985-0269.ch007

  • Krupadam RJ, Nesterov EE, Spivak DA (2014) Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems. J Hazard Mater 274:1–7. doi:10.1016/j.jhazmat.2014.03.050

    Article  CAS  Google Scholar 

  • Lai JY, Lin FC, Wang CC, Wang DM (1996) Effect of nonsolvent additives on the porosity and morphology of asymmetric TPX membranes. J Memb Sci 118(1):49–61. doi:10.1016/0376-7388(96)00084-1

    Article  CAS  Google Scholar 

  • Li ZM, Liu JM, Liu ZB, Liu QY, Lin X, Li FM, Yang ML, Zhu GH, Huang XM (2007) Preparation for nitrocellulose membrane-poly (vinyl alcohol)-ionic imprinting and its application to determine trace copper by room temperature phosphorimetry. Anal Chim Acta 589(1):44–50. doi:10.1016/j.aca.2007.02.044

    Article  CAS  Google Scholar 

  • Lu Y, Zhao B, Ren Y, Xiao G, Wang X, Li C (2007) Water-assisted formation of novel molecularly imprinted polymer membranes with ordered porous structure. Polymer 48(21):6205–6209. doi:10.1016/j.polymer.2007.08.045

    Article  CAS  Google Scholar 

  • Ma X, Chen R, Zheng X, Youn H, Chen Z (2011) Preparation of molecularly imprinted CS membrane for recognizing naringin in aqueous media. Polym Bull 66(6):853–863. doi:10.1007/s00289-011-0453-8

    Article  CAS  Google Scholar 

  • Malaisamy R, Ulbricht M (2004) Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions. Sep Purif Technol 39(3):211–219. doi:10.1016/j.seppur.2003.12.005

    Article  CAS  Google Scholar 

  • Meng F, Liao B, Liang S, Yang F, Zhang H, Song L (2010) Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs). J Memb Sci 361(1–2):1–14. doi:10.1016/j.memsci.2010.06.006

    Article  CAS  Google Scholar 

  • Quinn L, Polder A, Roos C, Kylin H, Løken KB, Skaare JU, Pieters R, Bouwman H (2011) Levels and implications of persistent organic pollutants and other contaminants in South Africa: results from the “LIPOPSA” project. DiVA 73: 1–4. diva2:477190

  • Ramamoorthy M, Ulbricht M (2003) Molecular imprinting of cellulose acetate-sulfonated polysulfone blend membranes for Rhodamine B by phase inversion technique. J Memb Sci 217(1–2):207–214. doi:10.1016/S0376-7388(03)00133-9

    Article  CAS  Google Scholar 

  • Schmelling DC, Poster DL, Chaychian M, Neta P, Silverman J, Al-Sheikhly M (1998) Degradation of polychlorinated biphenyls induced by ionizing radiation in aqueous micellar solutions. Environ Sci Technol 32(2):270–275. doi:10.1021/es9704601

    Article  CAS  Google Scholar 

  • Silvestri D, Barbani N, Cristallini C, Giusti P, Ciardelli G (2006) Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. J Memb Sci 282(1–2):284–295. doi:10.1016/j.memsci.2006.05.031

    Article  CAS  Google Scholar 

  • Smolders CA, Reuvers AJ, Boom RM, Wienk IM (1992) Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J Memb Sci 73(2–3):259–275. doi:10.1016/0376-7388(92)80134-6

    Article  CAS  Google Scholar 

  • Strathmann H, Kock K (1977) The formation mechanism of phase inversion membranes. Desalination 21(3):241–255. doi:10.1016/S0011-9164(00)88244-2

    Article  CAS  Google Scholar 

  • Stuer-Lauridsen F (2005) Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environ Pollut 136:503–524. doi:10.1016/j.envpol.2004.12.004

    Article  CAS  Google Scholar 

  • Vrijenhoek EM, Hong S, Elimelech M (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Memb Sci 188(1):115–128. doi:10.1016/S0376-7388(01)00376-3

    Article  CAS  Google Scholar 

  • Wang D, Li K, Teo WK (1995) Relationship between mass ratio of nonsolvent-additive to solvent in membrane casting solution and its coagulation value. J Memb Sci 98(3):233–240. doi:10.1016/0376-7388(94)00191-Z

    Article  CAS  Google Scholar 

  • Wepener V, van Dyk C, Bervoets L, O’Brien G, Covaci A, Cloete Y (2011) An assessment of the influence of multiple stressors on the Vaal River, South Africa. Phys Chem Earth Parts A/B/C 36(14–24):949–962. doi:10.1016/j.pce.2011.07.075

    Article  Google Scholar 

  • Widawski G, Rawiso M, François B (1994) Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369:387–389. doi:10.1038/369387a0

    Article  CAS  Google Scholar 

  • Wu Y, Huang X, Wen X, Chen F (2005) Function of dynamic membrane in self-forming dynamic membrane coupled bioreactor. Water Sci Technol 51(6–7):107–114

  • Xie C, Gao S, Guo Q, Xu K (2010) Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element. Microchim Acta 169(1):145–152. doi:10.1007/s00604-010-0303-7

    Article  CAS  Google Scholar 

  • Yang B, Yu G, Zhang Z (2006) Study on the application of electrochemical methods to the destruction of chlorinated aromatic pollutants. Prog Chem 18(01):87–92

    CAS  Google Scholar 

  • Yasuda T, Okuno T, Yasuda H (1994) Contact angle of water on polymer surfaces. Langmuir 10(7):2435–2439. doi:10.1021/la00019a068

    Article  CAS  Google Scholar 

  • Yoshikawa M, Izumi J, Kitao T, Sakamoto S (1997) Alternative molecularly imprinted polymeric membranes from a tetrapeptide residue consisting of D- or L-amino acids. Macromol Rapid Commun 18(9):761–767.81. doi:10.1002/marc.1997.030180902

    Article  CAS  Google Scholar 

  • Zhang G, Hua I (2000) Cavitation chemistry of polychlorinated biphenyls: decomposition mechanisms and rates. Environ Sci Technol 34(8):1529–1534. doi:10.1021/es981127f

    Article  CAS  Google Scholar 

  • Zhang Y, Shan X, Gao X (2011) Development of a molecularly imprinted membrane for selective separation of flavonoids. Sep Purif Technol 76(3):337–344. doi:10.1016/j.seppur.2010.10.024

    Article  CAS  Google Scholar 

  • Zhu X, Su Q, Cai J, Yang J, Gao Y (2006) Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from aqueous solutions. J Appl Polym Sci 101(6):4468–4473. doi:10.1002/app.24183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Trade and Industry (DTi) for funding the research and the National Research Foundation (NRF) for additional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hlengilizwe Nyoni.

Additional information

Responsible editor: Roland Kallenborn

Electronic supplementary material

ESM 1

(DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkhize, D.S., Nyoni, H., Quinn, L.P. et al. Molecularly imprinted membranes (MIMs) for selective removal of polychlorinated biphenyls (PCBs) in environmental waters: fabrication and characterization. Environ Sci Pollut Res 24, 11694–11707 (2017). https://doi.org/10.1007/s11356-017-8829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8829-4

Keywords

Navigation