Skip to main content

Advertisement

Log in

Geochemical behavior of ultramafic waste rocks with carbon sequestration potential: a case study of the Dumont Nickel Project, Amos, Québec

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The geochemical behavior of ultramafic waste rocks and the effect of carbon sequestration by these waste rocks on the water drainage quality were investigated using laboratory-scale kinetic column tests on samples from the Dumont Nickel Project (RNC Minerals, QC, Canada). The test results demonstrated that atmospheric CO2 dissolution induced the weathering of serpentine and brucite within the ultramafic rocks, generating high concentrations of Mg and HCO3 with pH values ranging between 9 and 10 in the leachates that promote the precipitation of secondary Mg carbonates. These alkaline pH values appear to have prevented the mobilization of many metals; Fe, Ni, Cu, and Zn were found at negligible concentrations in the leachates. Posttesting characterization using chemical analyses, diffuse reflectance infrared Fourier transform (DRIFT), and scanning electron microscope (SEM) observations confirmed the precipitation of secondary hydrated Mg carbonates as predicted by thermodynamic calculations. The formation of secondary Mg carbonates induced cementation of the waste particles, resulting in the development of a hardpan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amos RT, Blowes DW, Bailey BL, Sego DC, Smith L, Ritchie AIM (2015) Waste-rock hydrogeology and geochemistry. Appl Geochem 57:140–156

    Article  CAS  Google Scholar 

  • Assima GP, Larachi F Beaudoin, G., Molson J (2012) CO2 sequestration in chrysotile mining residues: implication of watering and passivation under environmental conditions. Industrial & Engineering Chemistry Research, pp 2–10

  • Assima GP, Larachi F, Beaudoin G, Molson J (2013) Dynamics of carbon dioxide uptake in chrysotile mining residues—effect of mineralogy and liquid saturation. International Journal of Greenhouse Gas Control 12:124–135

    Article  CAS  Google Scholar 

  • Assima GP, Larach IF, Beaudoin G, Molson J (2014a) Impact of temperature and oxygen availability on the dynamics of ambient CO2 mineral sequestration by nickel mining residues. Chem Eng J 240:394–403

    Article  CAS  Google Scholar 

  • Assima GP, Larachi F, Beaudoin G, Molson J (2014b) Emulation of ambient carbon dioxide diffusion and carbonation within nickel mining residues. Miner Eng 59:39–44

    Article  CAS  Google Scholar 

  • Assima GP, Larachi F, Molson J, Beaudoin G (2014c) Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxidemineral sequestration. Chem Eng J 245:56–64. doi:10.1016/jcej201402010

    Article  CAS  Google Scholar 

  • ASTM Standard D4892 (2014) Standard test method for density of solid pitch (Helium Pycnometer Method) West Conshohocken, PA, (http://www.astm.org)

  • ASTM Standard D6913-04 (2009) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. Annual Book of ASTM Standards vol. 0409

  • Bales RC, Morgan JJ (1985) Dissolution kinetics of chrysotile at pH 7 to 10. Geochim Cosmochim Acta 49(11):2281–2288

    Article  CAS  Google Scholar 

  • Ballirano P, De Vito C, Ferrini V, Mignardi S (2010) The thermal behaviour and structural stability of nesquehonite, MgCO3·3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: new constraints on CO2 sequestration within minerals. J Hazard Mater 178:522–528

    Article  CAS  Google Scholar 

  • Bea SA, Wilson SA, Mayer KU, Dipple GM, Power IM, Gamazo P (2012) Reactive transport modeling of natural carbon sequestration in ultramafic mine tailings. Vadose Zone J 11(2)

  • Beaudoin G, Hébert R, Constantin M (2008) Spontaneous carbonation of serpentine in milling and mining waste, southern Québec and Italy. Proceedings of Accelerated Carbonation for Environmental and Materials Engineering (ACEME2008), pp 73–82

  • Beinlich A, Austrheim H (2012) In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mine shafts. Chem Geol 332-333:32–44

    Article  CAS  Google Scholar 

  • Bénézeth P, Saldi GD, Dandurand JL, Schott J (2011) Experimental determination of the solubility product of magnesite at 50 to 200 C. Chem Geol 286(1):21–31

    Article  Google Scholar 

  • Benzaazoua M, Bussière B, Dagenais A-M, Archambault M (2004) Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol 46(8 SPECISS):1086–1101

    Article  CAS  Google Scholar 

  • Blowes DW, Reardon EJ, Jambor JL, Cherry JA (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim Cosmochim Acta 55(4):965–978

    Article  CAS  Google Scholar 

  • Blum AE, Stillings LL (1995) Feldspar dissolution kinetics. Rev Mineral Geochem 31:291–351

    CAS  Google Scholar 

  • Botha A, Strydom CA (2001) Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy 62:175–183

    Article  CAS  Google Scholar 

  • Botha A, Strydom CA (2003) DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. J Therm Anal Calorim 71:987–995

    Article  CAS  Google Scholar 

  • Canterford JH, Tsambourakis G, Lambert B (1984) Some observations on the properties of dypingite, Mg5(CO3)4(OH)2·5H2O, and related minerals. Miner Mag 48(1984):437–442

    Article  CAS  Google Scholar 

  • Chapuis RP, Légaré PP (1992) A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. Effects of aggregates and mineral filler on asphalt mixture performance, ASTM STP 1147:177–186

    Article  Google Scholar 

  • Daval D, Hellmann R, Martinez I, Gangloff S, Guyot F (2013) Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO 2. Chem Geol 351:245–256

    Article  CAS  Google Scholar 

  • Davies PJ, Bubela B (1973) The transformation of nesquehonite into hydromagnesite. Chem Geol 12(4):289–300

    Article  CAS  Google Scholar 

  • Demers I, Bussière B, Benzaazoua M, Mbonimpa M, Blier A (2008) Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Miner Eng 21:317–329

    Article  CAS  Google Scholar 

  • Furrer G, Stumm W (1986) The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al 2 O 3 and BeO. Geochim Cosmochim Acta 50(9):1847–1860

    Article  CAS  Google Scholar 

  • Gautier Q, Bénézeth P, Mavromatis V, Schott J (2014) Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75 °C. Geochim Cosmochim Acta 138:1–20

    Article  CAS  Google Scholar 

  • Gilbert SE, Cooke DR, Hollings P (2003) The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material. Environ Geol 44(6):687–697

    Article  CAS  Google Scholar 

  • Goff F, Lackner KS (1998) Carbon dioxide sequestering using ultramafic rocks. Environ Geosci 5(3):89–101

    Article  Google Scholar 

  • Gras A, Beaudoin G, Molson JWH, Plante B, Bussière B, Lemieux JM, Dupont PP, (2017) Isotopic evidence of passive mineral carbonation in mine wastes from the Dumont Nickel Project (Abitibi, Quebec). To be published

  • Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara mine (Morocco): 2. Mine waste geochemical behavior. Mine Water Environ 27(3):160–170

    Article  CAS  Google Scholar 

  • Hamilton JL, Wilson SA, Morgan B, Turvey CC, Paterson DJ, MacRae C, Southam G (2016) Nesquehonite sequesters transition metals and CO 2 during accelerated carbon mineralisation. International Journal of Greenhouse Gas Control 55:73–81

    Article  CAS  Google Scholar 

  • Hänchen M, Prigiobbe V, Baciocchi R, Mazzotti M (2008) Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure. Chem Eng Sci 63(4):1012–1028

    Article  Google Scholar 

  • Harrison AL, Power IM, Dipple GM (2012) Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environmental science & technology 47(1):126–134

    Article  Google Scholar 

  • Harrison AL, Dipple GM, Power IM, Mayer KU (2015) Influence of surface passivation and water content on mineral reactions in unsaturated porous media: implications for brucite carbonation and CO 2 sequestration. Geochim Cosmochim Acta 148:477–495

    Article  CAS  Google Scholar 

  • Harrison AL, Dipple GM, Power IM, Mayer KU (2016) The impact of evolving mineral–water–gas interfacial areas on mineral–fluid reaction rates in unsaturated porous media. Chem Geol 421:65–80

    Article  CAS  Google Scholar 

  • Hitch M, Ballantyne SM, Hindle SR (2010) Revaluing mine waste rock for carbon capture and storage. Int J Min Reclam Environ 24(1):64–79

    Article  CAS  Google Scholar 

  • Hopkinson L, Rutt K, Cressey G (2008) The transformation of nesquehonite to hydromagnesite in the system CaO-MgO-H2O-CO2: an experimental spectroscopic study. J Geol 116(4):387–400

    Article  CAS  Google Scholar 

  • Kandji EHB, Plante B, Bussière B, Beaudoin G, Dupont PP (2017) Geochemical behavior of ultramafic mine tailings with carbon sequestration potential. To be published

  • Kohfahl C, Graupner T, Fetzer C, Pekdeger A (2010) The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps a field study of the Halsbrücke lead–zinc mine tailings (Germany). Sci Total Environ 408(23):5932–5939

    Article  CAS  Google Scholar 

  • Königsberger E, Königsberger LC, Gamsjäger H (1999) Low-temperature thermodynamic model for the system Na 2 CO 3− MgCO 3− CaCO 3− H 2 O. Geochim Cosmochim Acta 63(19):3105–3119

    Article  Google Scholar 

  • Krevor S, Lackner KS (2011) Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. International Journal of Greenhouse Gas Control 5(4):1073–1080

    Article  CAS  Google Scholar 

  • Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20:1153–1170

    Article  CAS  Google Scholar 

  • Langmuir D (1965) Stability of carbonates in the system MgO–CO2–H2O. The Journal of Geology:730–754

  • Larachi F, Daldoul I, Beaudoin G (2010) Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: ex-situ and in-situ characterizations. Geochim Cosmochim Acta 74(11):3051–3075

    Article  CAS  Google Scholar 

  • Lawrence RW, Wang Y (1997) Determination of neutralization potential in the prediction of acid rock drainage. Proc, 4th International Conf on Acid Rock Drainage (ICARD) Vancouver, Canada, pp 451–464

  • Lechat K, Lemieux JM, Molson J, Beaudoin G, Hébert R (2016) Field evidence of CO2 sequestration by mineral carbonation in ultramafic milling wastes, Thetford Mines, Canada. Int J Greenhouse Gas Control 47(2016):110–121

    Article  CAS  Google Scholar 

  • Li J, Hitch M (2016a) Carbon dioxide adsorption isotherm study on mine waste for integrated CO 2 capture and sequestration processes. Powder Technol 291:408–413

    Article  CAS  Google Scholar 

  • Li J, Hitch M (2016b) Mechanical activation of ultramafic mine waste rock in dry condition for enhanced mineral carbonation. Miner Eng 95:1–4

    Article  Google Scholar 

  • Li J, Hitch M (2017) Structural and chemical changes in mine waste mechanically-activated in various milling environments. Powder Technol 308:13–19

    Article  CAS  Google Scholar 

  • Lin FC, Clemency CV (1981) The dissolution kinetics of brucite, antigorite, talc, and phlogopite at room temperature and pressure. Am Mineral 66(7–8):801–806

    CAS  Google Scholar 

  • Luce RW, Bartlett RW, Parks GA (1972) Dissolution kinetics of magnesium silicates. Geochim Cosmochim Acta 36(1):p35

    Article  Google Scholar 

  • Merkus H (2009) Particle size measurements: fundamentals, practice, quality (Vol. 17). Springer Science & Business Media

  • Morgan B, Wilson SA, Madsen IC, Gozukara YM, Habsuda J (2015) Increased thermal stability of nesquehonite (MgCO3·3H2O) in the presence of humidity and CO2: implications for low-temperature CO2 storage. International Journal of Greenhouse Gas Control 39:366–376

    Article  CAS  Google Scholar 

  • Oskierski HC, Dlugogorski BZ, Jacobsen G (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem Geol 358:156–169

    Article  CAS  Google Scholar 

  • Paktunc AD (1999). Characterization of mine wastes for prediction of acid mine drainage. In Environmental impacts of mining activities (pp. 19–40). Springer, Berlin, Heidelberg

  • Plante B, Benzaazoua M, Bussière B (2011) Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water Environ 30(1):2–21

    Article  CAS  Google Scholar 

  • Plante B, Bussière B, Benzaazoua M (2014) Lab to field scale effects on contaminated neutral drainage prediction from the Tio mine waste rocks. J Geochem Explor 137:37–47

  • Pokrovsky OS, Schott J (2004) Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control. Geochim Cosmochim Acta 68(1):31–45

    Article  CAS  Google Scholar 

  • Power IM, Wilson SA, Thom JM, Dipple GM, Southam G (2007) Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem Trans 8(1):13

  • Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chem Geol 260(3-4):286–300

  • Power I, Harrison AL, Dipple GM, Wilson SA, Kelemen PB, Hitch M, Southam G (2013) Carbon mineralization: from natural analogues to engineered systems. Reviews in Mineralogy & Geochemistry, Mineralogical Society of America 77:305–360

    Article  CAS  Google Scholar 

  • Pronost J, Beaudoin G, Tremblay J, Larachi F, Hébert R, Constantin M, Duchesne J (2011) Carbon sequestration kinetics and storage capacity of ultramafic mining waste. Environmental Science & Technology 45:9413–9420

    Article  CAS  Google Scholar 

  • Pronost J, Beaudoin G, Lemieux J-M, Hébert R, Constantin M, Marcouiller S, Klein M, Duchesne J, Molson JW, Larachi F, Maldague X (2012) CO2-depleted warm air venting from chrysotile milling waste (Thetford Mines, Québec, Canada): evidence for in situ carbon capture from the atmosphere. Geology 40:275–278

    Article  CAS  Google Scholar 

  • Raade G (1970) Dypingite, a new hydrous basic carbonate of magnesium from Norway. Am Mineral 55:1457–1465

    CAS  Google Scholar 

  • Rietveld HM (1993) The Rietveld method. Oxford University Press, Oxford

    Google Scholar 

  • RNC (2013) Technical report on the Dumont Ni project. Launay and Trécesson Townships, Quebec

    Google Scholar 

  • Robie RA, & Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10^ 5 Pascals) pressure and at higher temperatures (No. 2131). USGPO; For sale by US Geological Survey, Information Services

  • Rollo HA, Jamieson HE (2006) Interaction of diamond mine waste and surface water in the Canadian Arctic. Appl Geochem 21(9):1522–1538

    Article  CAS  Google Scholar 

  • Saldi GD, Jordan G, Schott J, Oelkers EH (2009) Magnesite growth rates as a function of temperature and saturation state. Geochim Cosmochim Acta 73:5646–5657

    Article  CAS  Google Scholar 

  • Scharer, J.M., Garg, V., Smith, R., Halbert, B.E. (1991) Use of steady state models for assessing acid generation in pyritic mine tailings. Proceedings, 2nd ICARD, Montreal CANMET, Ottawa, Vol 2, pp 211–229

  • Schott J, Berner RA, Sjoberg EL (1981) Mechanism of pyroxene and amphibole weathering–I experimental studies of iron-free minerals. Geochim Cosmochim Acta 45:2123–2135

    Article  CAS  Google Scholar 

  • Sciortino M, Mungall JE, Muinonen J (2015) Generation of high-Ni sulfide and alloy phases during Serpentinization of dunite in the Dumont sill, Quebec. Econ Geol 110:733–761

    Article  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils. EPA-600/2–78-054 US Gov Print Office, Washington, DC

    Google Scholar 

  • SRK. (1989) Draft Acid Rock Drainage Technical Guide, Vancouver, Canada

  • Thom JG, Dipple GM, Power IM, Harrison AL (2013) Chrysotile dissolution rates: implications for carbon sequestration. Appl Geochem 35:244–254

    Article  CAS  Google Scholar 

  • USEPA. (2006) MINTEQA2, Metal speciation equilibrium model for surface and ground water, version 3.1 Available at: https://vminteq.lwr.kth.se/

  • White WB (1971) Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate. The American Mineralogist 56(100):46–53

    CAS  Google Scholar 

  • White AF (2003). Natural weathering rates of silicate minerals In: Holland, HD, Turekian, KK (Ex Eds), Treatise on Geochemistry vol 5 Drever, JI (Ed) Surface and Ground Water, Weathering, and Soils, Elsevier, New York, 133–168

  • White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals. Rev Mineral, Mineralogical Society of America, vol 31

  • Wilson SA, Dipple GM, Power IM, Thom JM, Anderson RG, Raudsepp M, Gabites JE, Southam G (2009a) Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the Clinton Creek and Cassiar chrysotile deposits. Canada Economic Geology 104(1):95–112

    Article  CAS  Google Scholar 

  • Wilson SA, Raudsepp M, Dipple GM (2009b) Quantifying carbon fixation in trace minerals from processed kimberlite: a comparative study of quantitative methods using X-ray powder diffraction data with applications to the Diavik Diamond Mine, Northwest Territories, Canada. Appl Geochem 24(12):2312–2331

    Article  CAS  Google Scholar 

  • Wilson SA, Barker SL, Dipple GM, Atudorei V (2010) Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: implications for CO2 sequestration. Environmental science & technology 44(24):9522–9529

    Article  CAS  Google Scholar 

  • Wilson SA, Harrison AL, Dipple GM, Power IM, Barker SLL, Mayer KU, Fallon SJ, Raudsepp M, Southam G (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. International Journal of Greenhouse Gas Control 25:121–140

    Article  CAS  Google Scholar 

  • Zarandi AE, Larachi F, Beaudoin G, Plante B, Sciortino M (2016) Multivariate study of the dynamics of CO2 reaction with brucite-rich ultramafic mine tailings. International Journal of Greenhouse Gas Control 52:110–119

    Article  Google Scholar 

  • Zarandi AE, Larachi F, Beaudoin G, Plante B, Sciortino M (2017) Nesquehonite as a carbon sink in ambient mineral carbonation of ultramafic mining wastes. Chem Eng J 314:160–168

    Article  Google Scholar 

  • Zhang Z, Zheng Y, Ni Y, Liu Z, Chen J, Liang X (2006) Temperature and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. J Phys Chem B 110(26):12969–12973

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank RNC Minrals and the Natural Sciences and Engineering Research Council (NSERC) for their contributions to a Research and Collaborative Grant, the Research Institute in Mining and Environment (RIME-UQAT) and the RNC Minerals staff. The URSTM (UQAT) staff is also acknowledged for their laboratory support during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Plante.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

.

Figure S1

Cumulative and normalized column loadings for SO4, Mg, Si, and Ca (PDF 83 kb)

.

Figure S2

Post column test dismantling (PDF 253 kb)

.

Figure S3

Water saturation profile upon column dismantling (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandji, E.H.B., Plante, B., Bussière, B. et al. Geochemical behavior of ultramafic waste rocks with carbon sequestration potential: a case study of the Dumont Nickel Project, Amos, Québec. Environ Sci Pollut Res 24, 11734–11751 (2017). https://doi.org/10.1007/s11356-017-8735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8735-9

Keywords

Navigation