Skip to main content

Advertisement

Log in

High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In order to expand the potential applications of metal-organic frameworks (MOFs), structure directing agents modified mesoporous MIL-53(Al) (MIL-53(Al)-1) was investigated to adsorb triclosan (TCS) with two different initial concentrations. MIL-53(Al)-1 with high mesoporosity and total pore volume exhibited higher adsorption capacity and 4.4 times faster adsorption of TCS at low concentration (1 mg L−1) than that of microporous MIL-53(Al). Also, mesoporous as well as microporous MIL-53(Al) showed significant higher adsorption capacity and two orders of magnitude greater fast uptake of TCS than two kinds of mesoporous-activated carbon. The adsorption of TCS onto MIL-53(Al)-1 released more energy and had higher disorderliness than TCS on MIL-53(Al). The superior adsorption characteristics of MIL-53(Al)-1 were preserved over a wide pH range (4–9), at high concentration of ionic strengths, and in the presence of coexisting compounds (anions, cations, phenol, aniline, and humic acid). The selectivity adsorption and Fourier transform infrared (FT-IR) spectra revealed that TCS adsorption on MIL-53(Al)s was mainly driven by hydrophobicity interaction assisted with hydrogen bonding on MIL-53(Al)s. MIL-53(Al)s can be effectively regenerated several times by washing with 90% methanol-water (pH 11). All of the above results demonstrated MIL-53(Al)s are promising adsorbents for water purification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–1489

    Article  CAS  Google Scholar 

  • Afonso-Olivares C, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ (2016) Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes. Environ Sci Pollut Res 23:24476–24494

    CAS  Google Scholar 

  • Ahn KC et al (2008) In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ Health Perspect 116:1203–1210

    Article  CAS  Google Scholar 

  • Anger CT, Sueper C, Blumentritt DJ, McNeill K, Engstrom DR, Arnold WA (2013) Quantification of triclosan, chlorinated triclosan derivatives, and their dioxin photoproducts in lacustrine sediment cores. Environ Sci Technol 47:1833–1843

    Article  CAS  Google Scholar 

  • Barea E, Montoro C, Navarro JA (2014) Toxic gas removal–metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev 43:5419–5430

    Article  CAS  Google Scholar 

  • Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res 19:1044–1065

    Article  CAS  Google Scholar 

  • Behera SK, Oh S-Y, Park H-S (2010) Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. J Hazard Mater 179:684–691

    Article  CAS  Google Scholar 

  • Chang Z, Yang DH, Xu J, Hu TL, Bu XH (2015) Flexible metal–organic frameworks: recent advances and potential applications. Adv Mater 27:5432–5441

    Article  CAS  Google Scholar 

  • Chen XF, Zang H, Wang X, Cheng JG, Zhao RS, Cheng CG, Lu XQ (2012) Metal–organic framework MIL-53 (Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry. Analyst 137:5411–5419

    Article  CAS  Google Scholar 

  • Cho HH, Huang H, Schwab K (2011) Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27:12960–12967

    Article  CAS  Google Scholar 

  • Dąbrowski A, Podkościelny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon-a critical review. Chemosphere 58:1049–1070

    Article  Google Scholar 

  • DeCoste JB, Peterson GW (2014) Metal–organic frameworks for air purification of toxic chemicals. Chem Rev 114:5695–5727

    Article  CAS  Google Scholar 

  • DeLorenzo M, Keller J, Arthur C, Finnegan M, Harper H, Winder V, Zdankiewicz D (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ Toxicol 23:224–232

    Article  CAS  Google Scholar 

  • Dias EM, Petit C (2015) Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J Mater Chem A 3:22484–22506

    Article  CAS  Google Scholar 

  • Do XD, Hoang VT, Kaliaguine S (2011) MIL-53 (Al) mesostructured metal-organic frameworks. Microporous Mesoporous Mater 141:135–139

    Article  CAS  Google Scholar 

  • dos Reis GS, Sampaio CH, Lima EC, Wilhelm M (2016) Preparation of novel adsorbents based on combinations of polysiloxanes and sewage sludge to remove pharmaceuticals from aqueous solutions. Colloids Surf A Physicochem Eng Asp 497:304–315

    Article  Google Scholar 

  • Gao Y, Ji Y, Li G, An T (2014) Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic environments. Water Res 49:360–370

    Article  CAS  Google Scholar 

  • Hasan Z, Jhung SH (2015) Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazard Mater 283:329–339

  • Huang XX et al (2012) Hierarchically mesostructured MIL-101 metal–organic frameworks: supramolecular template-directed synthesis and accelerated adsorption kinetics for dye removal. CrystEngComm 14:1613–1617

    Article  CAS  Google Scholar 

  • Jung BK, Jun JW, Hasan Z, Jhung SH (2015) Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chem Eng J 267:9–15

    Article  CAS  Google Scholar 

  • Kawahigashi M, Sumida H, Yamamoto K (2005) Size and shape of soil humic acids estimated by viscosity and molecular weight. J Colloid Interface Sci 284:463–469

    Article  CAS  Google Scholar 

  • Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244:444–456

    Article  Google Scholar 

  • Khatikarn J, Satapornvanit K, Price OR, Van den Brink PJ (2016) Effects of triclosan on aquatic invertebrates in tropics and the influence of pH on its toxicity on microalgae. Environ Sci Pollut Res :1–10

  • Lei C, Hu YY, He MZ (2013) Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites. Chem Eng J 219:361–370

    Article  CAS  Google Scholar 

  • Li B, Zhu X, Hu K, Li Y, Feng J, Shi J, Gu J (2016) Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution. J Hazard Mater 302:57–64

    Article  CAS  Google Scholar 

  • Liu B, Lu J, Xie Y, Yang B, Wang X, Sun R (2014a) Microwave-assisted modification on montmorillonite with ester-containing Gemini surfactant and its adsorption behavior for triclosan. J Colloid Interface Sci 418:311–316

    Article  CAS  Google Scholar 

  • Liu FF, Zhao J, Wang S, Du P, Xing B (2014b) Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ Sci Technol 48:13197–13206

    Article  CAS  Google Scholar 

  • Liu Y, Her J-H, Dailly A, Ramirez-Cuesta AJ, Neumann DA, Brown CM (2008) Reversible structural transition in MIL-53 with large temperature hysteresis. J Am Chem Soc 130:11813–11818

    Article  CAS  Google Scholar 

  • Oh S-Y, Seo Y-D (2016) Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms. Environ Sci Pollut Res 23:951–961

    Article  CAS  Google Scholar 

  • Patil DV, Rallapalli PBS, Dangi GP, Tayade RJ, Somani RS, Bajaj HC (2011) MIL-53 (Al): an efficient adsorbent for the removal of nitrobenzene from aqueous solutions. Ind Eng Chem Res 50:10516–10524

    Article  CAS  Google Scholar 

  • Peng L, Zhang J, Xue Z, Han B, Sang X, Liu C, Yang G (2014) Highly mesoporous metal–organic framework assembled in a switchable solvent. Nat Commun 5

  • Prenzel T, Guedes T, Schlüter F, Wilhelm M, Rezwan K (2014) Tailoring surfaces of hybrid ceramics for gas adsorption–from alkanes to CO2. Sep Purif Technol 129:80–89

    Article  CAS  Google Scholar 

  • Prosser RS, Lissemore L, Solomon KR, Sibley PK (2014) Toxicity of biosolids-derived triclosan and triclocarban to six crop species. Environ Toxicol Chem 33:1840–1848

    Article  CAS  Google Scholar 

  • Pycke BF, Roll IB, Brownawell BJ, Kinney CA, Furlong ET, Kolpin DW, Halden RU (2014) Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States. Environ Sci Technol 48:7881–7890

    Article  CAS  Google Scholar 

  • Qian X, Yadian B, Wu R, Long Y, Zhou K, Zhu B, Huang Y (2013) Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. Int J Hydrog Energy 38:16710–16715

    Article  CAS  Google Scholar 

  • Rowsell JL, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14

    Article  CAS  Google Scholar 

  • Shan C, Ma Z, Tong M (2014) Efficient removal of trace antimony (III) through adsorption by hematite modified magnetic nanoparticles. J Hazard Mater 268:229–236

  • Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004

    Article  CAS  Google Scholar 

  • Tohidi F, Cai Z (2015) GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments. Environ Sci Pollut Res 22:11387–11400

    Article  CAS  Google Scholar 

  • Wang CF, Tian Y (2015) Reproductive endocrine-disrupting effects of triclosan: population exposure, present evidence and potential mechanisms. Environ Pollut 206:195–201

    Article  CAS  Google Scholar 

  • Wang J, Li H, Shuang C, Li A, Wang C, Huang Y (2015) Effect of pore structure on adsorption behavior of ibuprofen by magnetic anion exchange resins. Microporous Mesoporous Mater 210:94–100

    Article  CAS  Google Scholar 

  • Wang L, Wan C, Lee D-J, Liu X, Zhang Y, Chen X, Tay J-H (2014) Biosorption of antimony (V) onto Fe (III)-treated aerobic granules. Bioresour Technol 158:351–354

    Article  CAS  Google Scholar 

  • Wu C, Zhang K, Huang X, Liu J (2016) Sorption of pharmaceuticals and personal care products to polyethylene debris. Environ Sci Pollut Res 23:8819–8826

    Article  CAS  Google Scholar 

  • Xiao Y et al (2014) Highly selective sdsorption and separation of aniline/phenol from aqueous solutions by microporous MIL-53 (Al): a combined experimental and computational study. Langmuir 30:12229–12235

    Article  CAS  Google Scholar 

  • Xuan W, Zhu C, Liu Y, Cui Y (2012) Mesoporous metal–organic framework materials. Chem Soc Rev 41:1677–1695

    Article  CAS  Google Scholar 

  • Zhao JL et al (2013) Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge. Water Res 47:395–405

    Article  CAS  Google Scholar 

  • Zhou M, Wu YN, Qiao J, Zhang J, McDonald A, Li G, Li F (2013a) The removal of bisphenol a from aqueous solutions by MIL-53 (Al) and mesostructured MIL-53 (Al). J Colloid Interface Sci 405:157–163

    Article  CAS  Google Scholar 

  • Zhou S, Shao Y, Gao N, Deng J, Tan C (2013b) Equilibrium, kinetic, and thermodynamic studies on the adsorption of Triclosan onto multi-walled carbon nanotubes. Clean Soil Air Water 41:539–547

    Article  CAS  Google Scholar 

  • Zhu QL, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512

    Article  CAS  Google Scholar 

  • Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, Gu J (2014) Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl Mater Interfaces 7:223–231

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported bygrants from National Nature Science Foundation of China(21677052), Major Science and Technology Program for the Industry-Academia-Research Collaborative Innovation (201604010043, 201605122301117), Guangdong Province Science and Technology Project (2016B090918104, 2013B090200016, 2015B020215007, 2015B020235009, 2016B020240005), Joint fund of Guangdong Province ( U1401235), State Key Laboratory of Pulp and Paper Engineering(2016C03), and Zhanjiang of Guangdong Energy Co. (ZY-KJ-YX-2016X085F). The authors appreciate helpful comments and suggestions of Dr. Donald G. Barnes, guest professor at SCUT, during the drafting of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuancai Chen.

Additional information

Responsible editor: Guilherme L. Dotto

Highlights

• Mesoporous MIL-53(Al)-1 showed much higher adsorption capacity than MIL-53(Al).

• MIL-53(Al)-1 exhibited 4.4 times faster adsorption than MIL-53(Al).

• MIL-53(Al)s showed much higher adsorption capacity and faster adsorption than ACs.

• MIL-53(Al)-1 released more energy during TCS adsorption.

• The driving force of adsorption were hydrophobicity interaction and hydrogen bonding.

Electronic supplementary material

Electronic Supplementary Information (ESI) available: analysis of TCS, theory of data analysis, tables, and figures including the fitting of pseudo first-order and the pseudo second-order kinetic models, zeta potential of samples, effect of pH and ionic strength on adsorption, the nitrogen adsorption isotherms of samples before and after desorption, and package references.

.

ESM 1

(DOCX 695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, R., Zhang, J., Chen, Y. et al. High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al). Environ Sci Pollut Res 24, 8778–8789 (2017). https://doi.org/10.1007/s11356-017-8583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8583-7

Keywords

Navigation