Skip to main content
Log in

Phenolic wastewaters depuration by electrochemical oxidation process using Ti/IrO2 anodes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The electrochemical oxidation (EO) of phenolic wastewaters mimicking olive oil mill effluents was carried out in a batch stirring reactor using Ti/IrO2 anodes, varying the nature (NaCl and Na2SO4) and electrolyte concentration (1.8–20 g L−1), current density (57–119 mA cm−2) and initial pH (3.4–9). Phenolic content (TPh) and chemical oxygen demand (COD) removals were monitored as a function of applied charge and over time. The nature of the electrolyte greatly affected the efficiency of the system, followed by the influence of the current density. The NaCl concentration and the initial pH influenced the process in a lesser extent. The best operating conditions achieved were 10 g L−1 of NaCl, current density of 119 mA cm−2 and initial pH of 3.4. These parameters led to 100 and 84.8% of TPh and COD removal, respectively. Under these conditions, some morphological differences were observed by SEM on the surface of the anode after treatment. To study the potential toxicity of the synthetic effluent in neuronal activity, this mixture was applied to rat brain slices prior to and after EO. The results indicate that although the treated effluent causes a smaller depression of the neuronal reactive oxygen species (ROS) signal than the untreated one, it leads to a potentiation instead of recovery, upon washout. Furthermore, the purification of a real olive mill wastewater (OMW), with the organic load of the synthetic effluent, using the same optimised operating conditions, achieved total phenolic compounds abatement and 62.8% of COD removal.

This study demonstrates the applicability of this EO as a pre-treatment process of a real effluent, in order to achieve the legal limit values to be discharged into natural streams regarding its organic load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755. doi:10.1002/jctb.2214

    Article  CAS  Google Scholar 

  • Araújo CKC, Oliveira GR, Fernandes NS, Zanta CLPS, Castro SSL, da Silva DR, Martínez-Huitle CA (2014) Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure. Environ Sci Pollut Res 21:9777–9784. doi:10.1007/s11356-014-2918-4

    Article  Google Scholar 

  • Balice V, Cera O (1984) Acid phenolic fraction of the olive vegetation water determined by a gas chromatographic method. Grasas Aceites 35(5):178–180

    CAS  Google Scholar 

  • Bancila V, Nikonenko I, Dunant Y, Bloc A (2004) Zinc inhibits glutamate release via activation of pre-synaptic KATP channels and reduces ischaemic damage in rat hippocampus. J Neurochem 90:1243–1250. doi:10.1111/j.1471-4159.2004. 02587.x

    Article  CAS  Google Scholar 

  • Bonfatti F, De Battisti A, Ferro S, Lodi G, Osti S (2000) Anodic mineralization of organic substrates in chloride-containing aqueous media. Electrochim Acta 46:305–314. doi:10.1016/S0013-4686(00)00586-7

    Article  CAS  Google Scholar 

  • Borbón B, Oropeza-Guzman MT, Brillas E, Sirés I (2014) Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes. Environ Sci Pollut Res 21:8573–8584. doi:10.1007/s11356-014-2787-x

    Article  Google Scholar 

  • Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An up dated review. Appl Catal B 166–167:603–643. doi:10.1016/j.apcatb.2014.11.016

    Article  Google Scholar 

  • Cañizares P, Paz R, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manag 90:410–420. doi:10.1016/j.jenvman.2007.10.010

    Article  Google Scholar 

  • Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A (2009) Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. J Hazard Mater 167:268–274. doi:10.1016/j.jhazmat.2008.12.117

    Article  CAS  Google Scholar 

  • Chiang L-C, Chang J-E, Wen T-C (1995) Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res 29(2):671–678. doi:10.1016/0043-1354(94)00146-X

    Article  CAS  Google Scholar 

  • Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862. doi:10.1016/0013-4686(94)85175-1

    Article  CAS  Google Scholar 

  • Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25:23–28. doi:10.1007/BF00251260

    Article  CAS  Google Scholar 

  • Comninellis C, Pulgarin C (1993) Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J Appl Electrochem 23:108–112. doi:10.1007/BF00246946

    Article  CAS  Google Scholar 

  • Deborde M, von Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res 42:13–51. doi:10.1016/j.watres.2007.07.025

    Article  CAS  Google Scholar 

  • Esplugas S, Contreras S, Ollis D (2004) Engineering aspects of the integration of chemical and biological oxidation: simple mechanistic models for the oxidation treatment. J Environ Eng 130:967–974. doi:10.1061/(ASCE)0733-9372(2004)130:9(967)

    Article  CAS  Google Scholar 

  • Fajardo AS, Martins RC, Quinta-Ferreira RM (2014) Treatment of a synthetic phenolic mixture by electrocoagulation using Al, Cu, Fe, Pb, and Zn as anode materials. Ind Eng Chem Res 53:18339–18345. doi:10.1021/ie502575d

    Article  CAS  Google Scholar 

  • Felix C, Maiyalagan T, Pasupathi S, Bladergroen B, Linkov V (2012) Synthesis, characterisation and evaluation of IrO2 based binary metal oxide Electrocatalysts for oxygen evolution reaction. Int J Electrochem Sci 7:12064–12077

    CAS  Google Scholar 

  • Fierro S, Comninellis C (2010) Kinetic study of formic acid oxidation on Ti/IrO2 electrodes prepared using the spin coating deposition technique. Electrochim Acta 55:7067–7073. doi:10.1016/j.electacta.2010.06.066

    Article  CAS  Google Scholar 

  • Fierro S, Kapałka A, Comninellis C (2010) Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution. Electrochem Commun 12:172–174. doi:10.1016/j.elecom.2009.11.018

    Article  CAS  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6(6):449–462. doi:10.1038/nrn1671

    Article  CAS  Google Scholar 

  • Garcia-Segura S, Keller J, Brillas E, Radjenovic J (2015) Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J Hazard Mater 283:551–557. doi:10.1016/j.jhazmat.2014.10.003

    Article  CAS  Google Scholar 

  • Giraldo AL, Erazo-Erazo ED, Flórez-Acosta OA, Serna-Galvis EA, Torres-Palma RA (2015) Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components. Chem Eng J 279:103–114. doi:10.1016/j.cej.2015.04.140

    Article  CAS  Google Scholar 

  • Gotsi M, Kalogerakis N, Psillakis E, Samaras P, Mantzavinos D (2005) Electrochemical oxidation of olive oil mill wastewaters. Water Res 39:4177–4187. doi:10.1016/j.watres.2005.07.037

    Article  CAS  Google Scholar 

  • Greenberg A, Clesceri L, Eaton A (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Israilides CJ, Vlyssides AG, Mourafeti VN, Karvouni G (1997) Olive oil wastewater treatment with the use of an electrolysis system. Bioresour Technol 61:163–170. doi:10.1016/S0960-8524(97)00023-0

    Article  CAS  Google Scholar 

  • Jüttner K, Galla U, Schmieder H (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45:2575–2594. doi:10.1016/S0013-4686(00)00339-X

    Article  Google Scholar 

  • Karlsson RKB, Cornell A (2016) Selectivity between oxygen and chlorine evolution in the ChlorAlkali and chlorate processes. Chem Rev 116:2982–3028. doi:10.1021/acs.chemrev.5b00389

    Article  CAS  Google Scholar 

  • Kawaguchi K, Haarberg GM, Morimitsu M (2010) Nano-architecture on the mud-cracked surface of IrO2-Ta2O5 binary system. ECS Trans 25(33):67–73. doi:10.1149/1.3334792

    Article  CAS  Google Scholar 

  • Khoufi S, Aouissaoui H, Penninckx M, Sayadi S (2004) Application of electro-Fenton oxidation for the detoxification of olive mill wastewater phenolic compounds. Water Sci Technol 49:97–102

    CAS  Google Scholar 

  • Kotta E, Kalogerakis N, Mantzavinos D (2007) The effect of solids on the electrochemical treatment of olive mill effluents. J Chem Technol Biotechnol 82:504–511. doi:10.1002/jctb.1706

    Article  CAS  Google Scholar 

  • Lin J, Niu J, Ding S, Zhang L (2012) Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Water Res 46:2281–2289. doi:10.1016/j.watres.2012.01.053

    Article  CAS  Google Scholar 

  • Maharana D, Xu Z, Niu J, Rao NN (2015) Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes. Chemosphere 136:145–152. doi:10.1016/j.chemosphere.2015.04.100

    Article  CAS  Google Scholar 

  • Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340. doi:10.1039/B517632H

    Article  Google Scholar 

  • Martínez-Huitle CA, Ferro S, De Battisti A (2005) Electrochemical incineration in the presence of halides. Electrochem Solid-State Lett 8(11):D35–D39. doi:10.1149/1.2042628

    Article  Google Scholar 

  • Matias CM, Saggau P, Quinta-Ferreira ME (2010) Blockade of presynaptic K ATP channels reduces the zinc-mediated posttetanic depression at hippocampal mossy fiber synapses. Brain Res 320:22–27. doi:10.1016/j.brainres.2010.01.021

    Article  Google Scholar 

  • Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B Environ 202:217–261. doi:10.1016/j.apcatb.2016.08.037

    Article  CAS  Google Scholar 

  • Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876. doi:10.1038/nrn1786

    Article  CAS  Google Scholar 

  • Niu J, Lin H, Xu J, Wu H, Li Y (2012) Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environ Sci Technol 46:10191–10198. doi:10.1021/es302148z

    CAS  Google Scholar 

  • Niu J, Lin H, Gong C, Sun X (2013) Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environ Sci Technol 47:14341–14349. doi:10.1021/es402987t

    Article  CAS  Google Scholar 

  • Niu J, Li Y, Shang E, Xu Z, Liu J (2016) Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 146:526–538. doi:10.1016/j.chemosphere.2015.11.115

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2006) Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes. Water Res 40:1179–1184. doi:10.1016/j.watres.2006.01.020

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2009a) Electrochemical degradation of gallic acid on a BDD anode. Chemosphere 77:1060–1064. doi:10.1016/j.chemosphere.2009.09.007

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2009b) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. doi:10.1021/cr9001319

    Article  CAS  Google Scholar 

  • Panizza M, Martínez-Huitle CA (2013) Role of electrode materials for the anodic oxidation of a real landfill leachate – comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere 90:1455–1460. doi:10.1016/j.chemosphere.2012.09.006

    Article  CAS  Google Scholar 

  • Papastefanakis N, Mantzavinos D, Katsaounis A (2010) DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode. J Appl Electrochem 40:729–737. doi:10.1007/s10800-009-0050-9

    Article  CAS  Google Scholar 

  • Pereira DM, Valentão P, Pereira JA, Andrade PB (2009) Phenolics: from chemistry to biology. Molecules 14:2202–2211. doi:10.3390/molecules14062202

    Article  CAS  Google Scholar 

  • Polcaro AM, Vacca A, Mascia M, Palmas S, Ferrara F, Ruiz JR (2008) Selective oxidation of phenolic compounds at BDD and DSA anodes. J Environ Eng Manage 18(3):213–220

    CAS  Google Scholar 

  • Radjenovic J, Sedlak DL (2015) Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol 49:11292–11302. doi:10.1021/acs.est.5b02414

    Article  CAS  Google Scholar 

  • Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution sensors and abatement. Elsevier Science & Technology Books.

  • Rajkumar D, Kim JG, Palanivelu K (2005) Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment. Chem Eng Technol 28:98–105. doi:10.1002/ceat.200407002

    Article  CAS  Google Scholar 

  • Scialdone O, Randazzo S, Galia A, Silvestri G (2009) Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl. Water Res 43:2260–2272. doi:10.1016/j.watres.2009.02.014

    Article  CAS  Google Scholar 

  • Silva A, Nouli E, Xekoukoulotakis N, Mantzavinos D (2007) Effect of key operating parameters on phenols degradation during H2O2-assisted TiO2 photocatalytic treatment of simulated and actual olive mill wastewaters. Appl Catal B 73:11–22. doi:10.1016/j.apcatb.2006.12.007

    Article  CAS  Google Scholar 

  • Suzuki E, Okada T (2009) TEA-induced long-term potentiation at hippocampal mossy fiber-CA3 synapses: characteristics of its induction and expression. Brain Res 1247:21–27. doi:10.1016/j.brainres.2008.09.101

    Article  CAS  Google Scholar 

  • Smart TG, Xie X, Krishek BJ (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42:393–341

    Article  CAS  Google Scholar 

  • Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayanb S (2005) Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Res 39:1601–1613. doi:10.1016/j.watres.2005.01.016

    Article  CAS  Google Scholar 

  • Un UT, Altay U, Koparal AS, Ogutveren UB (2008) Complete treatment of olive mill wastewaters by electrooxidation. Chem Eng J 139:445–452. doi:10.1016/j.cej.2007.08.009

    Article  CAS  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74. doi:10.2174/157015909787602823

    Article  CAS  Google Scholar 

  • Valencia A, Morán J (2004) Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med 36:1112–1125. doi:10.1016/j.freeradbiomed.2004.02.013

    Article  CAS  Google Scholar 

  • Víctor-Ortega MD, Ochando-Pulido JM, Airado-Rodríguez D, Martínez-Férez A (2016) Experimental design for optimization of olive mill wastewater final purification with Dowex Marathon C and Amberlite IRA-67 ion exchange resins. J Ind Eng Chem 34:224–232. doi:10.1016/j.jiec.2015.11.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors, Ana S. Fajardo and Rui C. Martins, gratefully acknowledge the Fundação para a Ciência e Tecnologia, for financial support under the Doc grant (SFRH/BD/87318/2012) and the IFCT 2014 programme (IF/00215/2014) with funding from the European Social Fund and the Human Potential Operational Programme, respectively.

The Biophysics group thanks the Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal, for providing the rat brains. This work was funded by strategic project UID/NEU/04539/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana S. Fajardo.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajardo, A.S., Seca, H.F., Martins, R.C. et al. Phenolic wastewaters depuration by electrochemical oxidation process using Ti/IrO2 anodes. Environ Sci Pollut Res 24, 7521–7533 (2017). https://doi.org/10.1007/s11356-017-8431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8431-9

Keywords

Navigation