Skip to main content
Log in

Mercury toxicity to Eisenia fetida in three different soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Three different soils were spiked with 12 different concentrations of inorganic mercury (Hg). Sub-chronic Hg toxicity tests were carried out with Eisenia fetida in spiked soils by exposing the worms for 28 days following standard procedures. The toxicity studies revealed that Hg exerted less lethal effect on earthworms in acidic soil with higher organic carbon (S-3 soil) where water soluble Hg recovery was very low compared to the water soluble Hg fractions in soils with less organic carbon and higher pH (S-1 and S-2 soils). The concentrations of total Hg that caused 50 % lethality to E. fetida (LC50) after 28 days of exposure in S-1, S-2 and S-3 soils were 152, 294 and 367 mg kg−1, respectively. The average weight loss of E. fetida in three soils ranged from 5 to 65 %. The worms showed less weight loss in the organic carbon-rich soil (S-3) compared to less organic carbon containing soils (S-1 and S-2). The bioconcentration of Hg in E. fetida increased with increased Hg concentrations. The highest bioaccumulation took place in the acidic soil with higher organic carbon contents with estimated bioaccumulation factors ranging from 2 to 7.7. The findings of this study will be highly useful for deriving a more robust soil ecological guideline value for Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Álvarez CR, Moreno MJ, Bernardo FG, Martín-Doimeadios RR, Nevado JB (2014) Mercury methylation, uptake and bioaccumulation by the earthworm Lumbricus terrestris (Oligochaeta). Appl Soil Ecol 84:45–53

    Article  Google Scholar 

  • Belfroid A, Sijm D, Gestel CV (1996) Bioavailability and toxicokinetics of hydrophobic aromatic compounds in benthic and terrestrial invertebrates. Environ Rev 4:276–299

    Article  CAS  Google Scholar 

  • Burton DT, Turley SD, Fisher DJ, Green DJ, Shedd TR (2006) Bioaccumulation of total mercury and monomethylmercury in the earthworm Eisenia fetida. Wat Air Soil Pollut 170:37–54

    Article  CAS  Google Scholar 

  • Busto Y, Tack F, Cabrera X (2012) Mercury mobility and availability in highly contaminated solid wastes from a chlor-alkali plant. International J Environ Sust Dev 11:3–18

    Article  Google Scholar 

  • Cáceres TP, Megharaj M, Naidu R (2011) Toxicity and transformation of insecticide fenamiphos to the earthworm Eisenia fetida. Ecotoxicol 20:20–28

    Article  Google Scholar 

  • Calisi A, Zaccarelli N, Lionetto M, Schettino T (2013) Integrated biomarker analysis in the earthworm Lumbricus terrestris: application to the monitoring of soil heavy metal pollution. Chemosphere 90:2637–2644

    Article  CAS  Google Scholar 

  • CCME (1997) Recommended Canadian soil quality guidelines. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/index.html

  • CCME (1999) Canadian soil quality guidelines for the protection of environmental and human health. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/index.html

  • Dang F, Zhao J, Greenfield BK, Zhong H, Wang Y, Yang Z, Zhou D (2015) Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi. J Hazard Mater 292:44–51

    Article  CAS  Google Scholar 

  • Douglas TA, Loseto LL, Macdonald RW, Outridge P, Dommergue A, Poulin A, Amyot M, Barkay T, Berg T, Chetelat J (2012) The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review. Environ Chem 9:321–355

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47:4967–4983

    Article  CAS  Google Scholar 

  • Du M, Wei D, Tan Z, Lin A, Du Y (2015) Predicted no-effect concentrations for mercury species and ecological risk assessment for mercury pollution in aquatic environment. J Environ Sci 28:74–80

    Article  Google Scholar 

  • Duan X, Xu M, Zhou Y, Yan Z, Du Y, Zhang L, Zhang C, Bai L, Nie J, Chen G, Li F (2016) Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils. Chemosphere 145:185–192

    Article  CAS  Google Scholar 

  • EA (2009) Soil guideline values for mercury in soil: science report SCO50021/Mercury SGV. Environment Agency. https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sgvs.

  • Furutani A, Rudd JW (1980) Measurement of mercury methylation in lake water and sediment samples. Appl Environ Microbiol 40:770–776

    CAS  Google Scholar 

  • Garcia E, Orta M, Suarez P (1999) Toxicity assays and bioconcentration of mercury in bacteria selected from marine environments. Bull Environ Contam Toxicol 62:79–86

    Article  CAS  Google Scholar 

  • Gardner WH, Klute A (1986) Water content. Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn. SSSA Inc. and ASA Inc., Madison, WI

    Google Scholar 

  • Gnamuš A, Byrne AR, Horvat M (2000) Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ. Sci. Technol. 34:3337–3345

    Article  Google Scholar 

  • GON (2000) Dutch Target and Intervention Values (the New Dutch List). Government of the Netherlands, Netherlands

  • Gu B, Bian Y, Miller CL, Dong W, Jiang X, Liang L (2011) Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Nat Acad Sci 108:1479–1483

    Article  CAS  Google Scholar 

  • Hinton JJ, Veiga MM (2009) Using earthworms to assess Hg distribution and bioavailability in gold mining soils. Soil Sed Contam 18:512–524

    CAS  Google Scholar 

  • Jänsch S, Römbke J, Schallnaß H-J, Terytze K (2007) Derivation of soil values for the path ‘soil-soil organisms’ for metals and selected organic compounds using species sensitivity distributions. Environ Sci Pollut Res 14:308–318

    Article  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47

    Article  CAS  Google Scholar 

  • Lionetto MG, Calisi A, Schettino T (2012) Earthworm biomarkers as tools for soil pollution assessment. INTECH Open Access Publisher

  • Lock K, Janssen C (2001) Ecotoxicity of mercury to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Biol Fert Soils 34:219–221

    Article  CAS  Google Scholar 

  • Mahbub KR, Krishnan K, Megharaj M, Naidu R (2016) Mercury inhibits soil enzyme activity in a lower concentration than the guideline value. Bull Environ Contam Toxicol 96:76–82

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58:3191–3198

    Article  CAS  Google Scholar 

  • McCarty L, Mackay D, Smith A, Ozburn G, Dixon D (1993) Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: polar narcotic organics. Ecotoxicol Environ Saf 25:253–270

    Article  CAS  Google Scholar 

  • Melgar M, Alonso J, García M (2009) Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci Tot Environ 407:5328–5334

    Article  CAS  Google Scholar 

  • Miller W, Miller D (1987) A micro-pipette method for soil mechanical analysis. Commun Soil Sci Plant Anal 18:1–15

    Article  CAS  Google Scholar 

  • Neculita C-M, Zagury GJ, Deschênes L (2005) Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. J Environ Qual 34:255–262

    CAS  Google Scholar 

  • NEPM (2013) National Environmental Protection Measure 1999. Schedule B1: guideline on investigation levels for soil and groundwater. doi:http://www.comlaw.gov.au/Details/F2013C00288/Html/Volume_2

  • Nevado JJB, Martín-Doimeadios RCR, Mateo R, Fariñas NR, Rodríguez-Estival J, Ropero MJP (2012) Mercury exposure and mechanism of response in large game using the Almadén mercury mining area (Spain) as a case study. Environ Res 112:58–66

    Article  Google Scholar 

  • OECD (1984) OECD guidelines for testing of chemicals n 207, “Earthworm acute toxicity tests”, adopted: 4 April 1984

  • Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

    Article  CAS  Google Scholar 

  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2015) Ecological implications of motor oil pollution: earthworm survival and soil health. Soil Biol Biochem 85:72–81

    Article  CAS  Google Scholar 

  • Reis AT, Lopes CB, Davidson CM, Duarte AC, Pereira E (2014) Extraction of mercury water-soluble fraction from soils: an optimization study. Geoderma 213:255–260

    Article  CAS  Google Scholar 

  • Rieder SR, Brunner I, Horvat M, Jacobs A, Frey B (2011) Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environ Pollut 159:2861–2869

    Article  CAS  Google Scholar 

  • Rodrigues AC, Jesus FT, Fernandes MA, Morgado F, Soares AM, Abreu SN (2013) Mercury toxicity to freshwater organisms: extrapolation using species sensitivity distribution. Bull Environ Contam Toxicol 91:191–196

    Article  CAS  Google Scholar 

  • Sample BE, Suter GW, Beauchamp JJ, Efroymson RA (1999) Literature-derived bioaccumulation models for earthworms: development and validation. Environ Toxicol Chem 18:2110–2120

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez J (2006) Earthworm biomarkers in ecological risk assessment, Rev. Environ. Contam. Toxicol. Springer, Berlin Heidelberg New York, pp. 85–126

    Google Scholar 

  • Skyllberg U (2012) Chemical speciation of mercury in soil and sediment, Environmental Chemistry and Toxicology of Mercury. Wiley, New York

    Google Scholar 

  • Skyllberg U, Bloom PR, Qian J, Lin C-M, Bleam WF (2006) Complexation of mercury (II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol 40:4174–4180

    Article  CAS  Google Scholar 

  • Sloss L (2012) Legislation, standards and methods for mercury emissions control CCC/195 London, UK, IEA Clean Coal Centre 43

  • Stein ED, Cohen Y, Winer AM (1996) Environmental distribution and transformation of mercury compounds. Crit Rev Environ Sci Technol 26:1–43

    Article  CAS  Google Scholar 

  • Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C (2010) Critical limits for Hg (II) in soils, derived from chronic toxicity data. Environ Pollut 158:2465–2471

    Article  CAS  Google Scholar 

  • USEPA (2015) Regional Screening Level (RSL) Summary Table (TR = 1E-6, HQ = 1) June 2015 (revised). USA

  • Wu Y, Wang W-X (2014) Intracellular speciation and transformation of inorganic mercury in marine phytoplankton. Aq Toxicol 148:122–129

    Article  CAS  Google Scholar 

  • Yuan Q, Guoqing Z, Wenxiang H (2012) Effects of Hg on soil enzyme. J Northwest Agric Forest Univ 40:191–198

    Google Scholar 

  • Zagury GJ, Neculita CM, Bastien C, Deschênes L (2006) Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants. Environ Toxicol Chem 25:1138–1147

    Article  CAS  Google Scholar 

  • Zhang ZS, Zheng DM, Wang QC, Lv XG (2009) Bioaccumulation of total and methyl mercury in three earthworm species (Drawida sp., Allolobophora sp., and Limnodrilus sp.). Bull Environ Contam Toxicol 83(6):937–942

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE) in collaboration with Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle. The funding was provided as PhD scholarship to KRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khandaker Rayhan Mahbub.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahbub, K.R., Krishnan, K., Naidu, R. et al. Mercury toxicity to Eisenia fetida in three different soils. Environ Sci Pollut Res 24, 1261–1269 (2017). https://doi.org/10.1007/s11356-016-7869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7869-5

Keywords

Navigation