Skip to main content
Log in

Dual mechanochemical immobilization of heavy metals and decomposition of halogenated compounds in automobile shredder residue using a nano-sized metallic calcium reagent

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90–100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45–1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L−1; Cr 1.5 mg L−1; Fe, Pb, and Zn 3.0 mg L−1; Mn and Ni 1 mg L−1) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker DE, Amacher MC (1982) Nickel, copper, zinc, cadmium. In: Miller RH, Keeney DR (eds) Methods of soil analysis. Part II. Chemical and microbiological properties. American Society of Agronomy–Soil Science Society of America, Madison, WI, pp. 323–334

    Google Scholar 

  • Boisson J, Ruttens A, Mencha M, Vangronsveld J (1999) Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environ Pollut 104:225–233

    Article  CAS  Google Scholar 

  • Cao RX, Ma LQ, Chen M, Singh SP, Harris WG (2003) Phosphate induced metal immobilization in a contaminated site. Environ Pollut 122:19–28

    Article  CAS  Google Scholar 

  • Castaldi P, Santona L, Melis P (2005) Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere 60:365–371

    Article  CAS  Google Scholar 

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90:543–556

    Article  CAS  Google Scholar 

  • Ciacci L, Morselli L, Passarini F, Santini A, Vassura I (2010) A comparison among different automotive shredder residue treatment processes. Inter J Life Cycle Ass 15:896–906

    Article  CAS  Google Scholar 

  • Cunliffe A, Jones N, Williams P (2003) Pyrolysis of composite plastic waste. Environ Technol 24:653–663

    Article  CAS  Google Scholar 

  • Derome J (2000) Detoxification and amelioration of heavy metal contaminated forest soils by means of liming and fertilization. Environ Pollut 107:79–88

    Article  CAS  Google Scholar 

  • Ehsan S, Prasher SO, Marshall WD (2006) A washing procedure to mobilize mixed contaminants from soil: I. Polychlorinated biphenyl compounds. J Environ Qual 35:2146–2153

    Article  CAS  Google Scholar 

  • Ehsan S, Prasher SO, Marshall WD (2007) Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68:150–158

    Article  CAS  Google Scholar 

  • Fiore S, Ruffino B, Zanetti MC (2012) Automobile shredder residues in Italy: characterization and valorization opportunities. Waste Manag 32:1548–1559

    Article  CAS  Google Scholar 

  • Goñi S, Guerrero A, Lorenzo MP (2006) Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium. J Hazard Mater 137:1608–1617

    Article  Google Scholar 

  • Hwang I, Yokono S, Matsuto T (2008) Pretreatment of automobile shredder residue (ASR) for fuel utilization. Chemosphere 71:879–885

    Article  CAS  Google Scholar 

  • Ikoma T, Zhang Q, Saito F, Akiyama K, Tero-Kubota S, Kato T (2001) Radicals in the mechanochemical dechlorination of hazardous organochlorine compounds using CaO nanoparticles. Bull Chem Soc Jpn 74:2303–2309

    Article  CAS  Google Scholar 

  • Kim K, Joung H, Nam H, Seo Y, Hong H, Yoo T, Lim B, Park J (2004) Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea. Waste Manag 24:533–540

    Article  CAS  Google Scholar 

  • Krishnamurti GSR, Huang PM, Van Rees KCJ, Kozak LM, Rostad HPW (1995) Speciation of particulate-bound Cd in soils and its bioavailability. Analyst 120:659–665

    Article  CAS  Google Scholar 

  • Lu L, Lai MO, Zhang S (1997) Diffusion in mechanical alloying. J Mater Process Tech 67:100–104

    Article  Google Scholar 

  • Mallampati SR, Mitoma Y, Okuda T, Sakita S, Kakeda M (2012a) High immobilization of soil cesium using ball-milling with nano-metallic Ca/CaO/NaH2PO4: implications for the remediation of radioactive soils. Environ Chem Lett 10:201–207

    Article  CAS  Google Scholar 

  • Mallampati SR, Okuda T, Mitoma Y, Sakita S, Kakeda M (2012b) Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture. Chemosphere 89:717–723

    Article  CAS  Google Scholar 

  • Mallampati SR, Mitoma Y, Okuda T, Sakita S, Simion C (2014) Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture. Environ Sci Pollut Res 21:9270–9277

    Article  CAS  Google Scholar 

  • Mancini G, Viotti P, Luciano A, Fino D (2014) On the ASR and ASR thermal residues characterization of full scale treatment plant. Waste Manag 34:448–457

    Article  CAS  Google Scholar 

  • Ministry of Environment (2000) Regulatory of waste management report, Seoul, Republic of Korea, pp 2–5

  • Mirabile D, Pistelli M, Marchesini M (2002) The thermal valorization of automobile shredder reissue: injection in blast furnace. Waste Manag 22:841–851

    Article  CAS  Google Scholar 

  • Mitoma Y, Miyata H, Egashira N, Simion A, Kakeda M, Simion C (2011) Chemosphere 83:1326–1330

    Article  CAS  Google Scholar 

  • Miyoshi K, Nishio T, Yasuhara A, Morita M, Shibamoto T (2004) Chemosphere 55:1439–1446

    Article  CAS  Google Scholar 

  • Montinaro S, Concas A, Pisu M, Cao G (2007) Remediation of heavy metals contaminated soils by ball milling. Chemosphere 67:631–639

    Article  CAS  Google Scholar 

  • Morselli L, Santini A, Passarini F, Vassura I (2010) Automotive shredder residue (ASR) characterization for a valuable management. Waste Manag 30:2228–2234

    Article  CAS  Google Scholar 

  • Nakayama S, Itoh K (2003) Immobilization of strontium by crystalline zirconium phosphate. J Eur Ceramic Soc 23:1047–1052

    Article  CAS  Google Scholar 

  • Oh J, Lee K, Lee J, Chang Y (1999) The evaluation of PCDD/Fs from various Korean incinerators. Chemosphere 38:2097–2108

    Article  CAS  Google Scholar 

  • Okuno H, Yim B, Mizukoshi Y, Nagata Y, Maeda Y (2000) Sonolytic degradation of hazardous organic compounds in aqueous solution. Ultrason Sonochem 7:261–264

    Article  CAS  Google Scholar 

  • Park CK (2000) Hydration and solidification of hazardous wastes containing heavy metals using modified cementitious materials. Cem Concr Res 30:429–435

    Article  CAS  Google Scholar 

  • Polettini A, Pomi R, Sirini P, Testa F (2001) Properties of Portland cement-stabilized MSWI fly ashes. J Hazard Mater 88:123–138

    Article  CAS  Google Scholar 

  • Raicevica S, Radoicicb TK, Zouboulisc AI (2005) In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. J Hazard Mater 117:41–53

    Article  Google Scholar 

  • Santanu P, Pak K (2006) Solidification-stabilization of organic and inorganic contaminants using Portland cement: a literature review. Environ Revie 14:217–255

    Article  Google Scholar 

  • Shin M, Barrington SF, Marshall WD, Kim JW (2004) Simultaneous soil Cd and PCB decontamination using a surfactant/ligand solution. J Environ Sci Heal A 39:2783–2798

    Article  Google Scholar 

  • Srinivasa RM, Kurose K, Okuda T, Nishijima W, Okada M (2007) Separation of polyvinyl chloride (PVC) from automobile shredder residue (ASR) by froth flotation with ozonation. J Hazard Mater 147:1051–1055

    Article  Google Scholar 

  • Sung C (2011) Import and export of waste in Korea: regulation and actual practice. Kojima and Michida ed., Economic integration and recycling in Asia: an interm report, Chosakenkyu Hokokusho. http://www.ide.go.jp/Japanese/Publish/Download/Report/2010/pdf/2010_431_04.pdf.

  • Suryanarayana C (1995) Bibliography on mechanical alloying and milling. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  • Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  • The Act on the Resource Recycling of Waste Electrical Electronic Equipment (WEEE) and End-of-life Vehicles (ELVs) was adopted 2008. http://www.aseic.org/ctt/CntntDtlR.do?pGbSeq=5&pageNm=map.

  • The Ministry of Environment (2011) Republic of Korea, Article 11, Amended by Law No. 5865

  • Ukisu Y, Miyadera T (2003) Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts. Appl Cat B 40:141–149

    Article  CAS  Google Scholar 

  • Van der Heijden AWAM, Belliere V, Espinosa Alonso L, Daturi M, Manoilova OV, Weckhuysen BM (2005) Destructive adsorption of CCl4 over lanthanum-based solids: linking activity to acid–base properties. J Phys Chem B 109:23993–24001

    Article  CAS  Google Scholar 

  • Vollmuth S, Niessner R (1995) Degradation of PCDD, PCDF, PAH, PCB and chlorinated phenols during the destruction-treatment of landfill seepage water in laboratory model reactor (UV, ozone, and UV/ozone). Chemosphere 30:2317–2331

    Article  CAS  Google Scholar 

  • Wang C, Zhu N, Wang Y, Zhang F (2012) Co-detoxification of transformer oil-contained PCBs and heavy metals in medical waste incinerator fly ash under sub- and supercritical water. Environ Sci Technol 46:1003–1009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by 2016 research funds from the University of Ulsan, Ulsan, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byoung Ho Lee or Cristian Simion.

Additional information

Responsible Editor: Bingcai Pan

Electronic supplementary material

ESM 1

(DOCX 918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallampati, S.R., Lee, B.H., Mitoma, Y. et al. Dual mechanochemical immobilization of heavy metals and decomposition of halogenated compounds in automobile shredder residue using a nano-sized metallic calcium reagent. Environ Sci Pollut Res 23, 22783–22792 (2016). https://doi.org/10.1007/s11356-016-7458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7458-7

Keywords

Navigation