Skip to main content

Advertisement

Log in

Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide

  • Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A/m2 :

Ampere per square meter

Atm:

Atmosphere

CEM:

Cation exchange membrane

CL:

Catalyst layer

DO:

Dissolved oxygen

GDE:

Gas diffusion electrode

GDL:

Gas diffusion layer

MES:

Microbial electrosynthesis

k La:

Gas–liquid mass transfer coefficient

NaBES:

Sodium 2-bromoethanesulfonate

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene difluoride

rpm:

Revolution per minute

SHE:

Standard hydrogen electrode

OD:

Optical density

VFA:

Volatile fatty acid

References

  • Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78. doi:10.1016/j.tibtech.2010.11.006

    Article  CAS  Google Scholar 

  • Alvarez-Gallego Y, Dominguez-Benetton X, Pant D, Diels L, Vanbroekhoven K, Genné I, Vermeiren P (2012) Development of gas diffusion electrodes for cogeneration of chemicals and electricity. Electrochim Acta 82:415–426. doi:10.1016/j.electacta.2012.06.096

    Article  CAS  Google Scholar 

  • Bajracharya S, ter Heijne A, Dominguez X, Strik DPBTB, Vanbroekhoven K, Buisman CJN, Pant D, ter Heijne A, Benetton XD, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015) CO2 reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol. doi:10.1016/j.biortech.2015.05.081

    Google Scholar 

  • Blanchet EM, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A (2015) Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy Environ Sci 8:3731–3744. doi:10.1039/C5EE03088A

    Article  CAS  Google Scholar 

  • Cassman KG, Liska AJ (2007) Food and fuel for all: realistic or foolish? Biofuels, Bioproducts and Biorefining 1:18–23. doi:10.1002/bbb.3

    Article  CAS  Google Scholar 

  • CAST (2006) Convergence of agriculture and energy : implications for research and policy, CAST commentary, QTA2006-3. Ames, Iowa

    Google Scholar 

  • Chu S (2009) Carbon capture and sequestration. Science 325:1599. doi:10.1126/science.1181637

    Article  CAS  Google Scholar 

  • Cussler EL (1997) Diffusion: mass transfer in fluid systems, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. doi:10.1007/s10811-005-8701-7

    Article  Google Scholar 

  • Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100. doi:10.1196/annals.1419.016

    Article  CAS  Google Scholar 

  • Fan Y, Hongqiang H, Liu H, Fan Y, Hu H, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41:8154–8158. doi:10.1021/es071739c

    Article  CAS  Google Scholar 

  • Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395. doi:10.1016/j.coche.2012.07.005

    Article  Google Scholar 

  • Fernández, F.G.A., Grima, E.M., Sevilla, J.M.F., López, C.V.G., Moya, B.L., Aparicio, J.C.B., 2011. Liquid-phase gas collection. US2011015957 A1.

  • Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT (2010) Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ Sci Technol 44:2728–2734. doi:10.1021/es9031985

    Article  CAS  Google Scholar 

  • Gabriel Acien Fernandez F, Gonzalez-Lopez CV, Fernandez Sevilla JM, Molina Grima E (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586. doi:10.1007/s00253-012-4362-z

    Article  Google Scholar 

  • Ganigué R, Puig S, Batlle-Vilanova P, Balaguer MD, Colprim J (2015) Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun 51:3235–3238. doi:10.1039/C4CC10121A

    Article  Google Scholar 

  • González-López CV, Acién Fernández FG, Fernández-Sevilla JM, Sánchez Fernández JF, Molina Grima E (2012) Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 109:1637–1650. doi:10.1002/bit.24446

    Article  Google Scholar 

  • HaoYu E, Cheng S, Scott K, Logan B (2007) Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources 171:275–281. doi:10.1016/j.jpowsour.2007.07.010

    Article  CAS  Google Scholar 

  • Hill GA (2006) Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe. Ind Eng Chem Res 45:5796–5800. doi:10.1021/ie060242t

    Article  CAS  Google Scholar 

  • Hu P, Rismani-yazdi H, Gregory S (2013) Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica. AICHE J 59:3176–3183. doi:10.1002/aic.14127

    Article  CAS  Google Scholar 

  • IPCC, 2014. Climate change 2014: synthesis report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.

  • Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2:13093–13102. doi:10.1039/C4TA03101F

    Article  CAS  Google Scholar 

  • Jourdin L, Lu Y, Flexer V, Keller J, Freguia S (2015) Biologically-induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem. doi:10.1002/celc.201500530

    Google Scholar 

  • Kopljar D, Inan A, Vindayer P, Wagner N, Klemm E (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44:1107–1116. doi:10.1007/s10800-014-0731-x

    Article  CAS  Google Scholar 

  • LaBelle EV, Marshall CW, Gilbert JA, May HD (2014) Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS One 9:e109935

    Article  Google Scholar 

  • Le Quéré C, Peters GP, Andres RJ, Andrew RM, Boden TA, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker DCE, Bopp L, Canadell JG, Chini LP, Doney SC, Harper A, Harris I, House JI, Jain AK, Jones SD, Kato E, Keeling RF, Klein Goldewijk K, Körtzinger A, Koven C, Lefèvre N, Maignan F, Omar A, Ono T, Park G-H, Pfeil B, Poulter B, Raupach MR, Regnier P, Rödenbeck C, Saito S, Schwinger J, Segschneider J, Stocker BD, Takahashi T, Tilbrook B, van Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S (2014) Global carbon budget 2013. Earth Syst Sci Data 6:235–263. doi:10.5194/essd-6-235-2014

    Article  Google Scholar 

  • Lee J, Little B (2015) Electrochemical and chemical complications resulting from yeast extract addition to stimulate microbial growth. Corrosion. doi:10.5006/1833

    Google Scholar 

  • Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 1–6. doi:10.1016/j.copbio.2013.02.012

  • Mahmood MN, Masheder D, Harty CJ (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17:1159–1170. doi:10.1007/BF01023599

    Article  CAS  Google Scholar 

  • Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:8412–8420. doi:10.1128/AEM.02401-12

    Article  CAS  Google Scholar 

  • Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47:6023–6029. doi:10.1021/es400341b

    Article  CAS  Google Scholar 

  • Modestra JA, Navaneeth B, Venkata Mohan S (2015) Bio-electrocatalytic reduction of CO2: enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis. J CO2 Util 10:78–87. doi:10.1016/j.jcou.2015.04.001

    Article  Google Scholar 

  • Mohanakrishna G, Seelam JS, Vanbroekhoven K, Pant D (2015) An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss. doi:10.1039/C5FD00041F

    Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886. doi:10.1128/AEM.02642-10

    Article  CAS  Google Scholar 

  • Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis : feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic. MBio 1:e00103–e00110. doi:10.1128/mBio.00103-10.Editor

    Article  Google Scholar 

  • Oh S-E, Van Ginkel S, Logan BE (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37:5186–5190. doi:10.1021/Es034291y

    Article  CAS  Google Scholar 

  • Pant D, Van Bogaert G, De Smet M, Diels L, Vanbroekhoven K (2010) Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim Acta 55:7710–7716. doi:10.1016/j.electacta.2009.11.086

    Article  CAS  Google Scholar 

  • Pasupuleti SB, Srikanth S, Venkata Mohan S, Pant D (2015) Continuous mode operation of microbial fuel cell (MFC) stack with dual gas diffusion cathode design for the treatment of dark fermentation effluent. Int J Hydrogen Energy 40:12424–12435. doi:10.1016/j.ijhydene.2015.07.049

    Article  CAS  Google Scholar 

  • Patil SA, Arends JBA, Vanwonterghem I, van Meerbergen J, Guo K, Tyson GW, Rabaey K (2015a) Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ Sci Technol 49(14):8833–8843

  • Patil SA, Gildemyn S, Pant D, Zengler K, Logan BE, Rabaey K (2015b) A logical data representation framework for electricity-driven bioproduction processes. Biotechnol Adv 33:736–744. doi:10.1016/j.biotechadv.2015.03.002

    Article  CAS  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716. doi:10.1038/nrmicro2422

    Article  CAS  Google Scholar 

  • Sakai S, Nakashimada Y, Yoshimoto H, Watanabe S, Okada H, Nishio N (2004) Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1. Biotechnol Lett 26:1607–1612. doi:10.1023/B:BILE.0000045661.03366.f2

    Article  CAS  Google Scholar 

  • Stams AJM, Plugge CM, De Bok FAM, Van Houten BHGW, Lens P, Dijkman H, Weijma J (2005) Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci Technol 52:13–20

    CAS  Google Scholar 

  • Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513–517. doi:10.1021/es902371e

    Article  CAS  Google Scholar 

  • Su M, Jiang Y, Li D (2013) Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture. J Microbiol Biotechnol 23:1140–1146

    Article  CAS  Google Scholar 

  • Talbot P, Gortares MP, Lencki RW, de la Noüe J (1991) Absorption of CO2 in algal mass culture systems: a different characterization approach. Biotechnol Bioeng 37:834–842. doi:10.1002/bit.260370907

    Article  CAS  Google Scholar 

  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381. doi:10.1016/j.copbio.2011.10.008

    Article  CAS  Google Scholar 

  • Treybal RE (1981) Mass-transfer operations, 3 edn. McGraw-Hill, Inc

    Google Scholar 

  • Vega JL, Prieto S, Elmore BB, Clausen EC, Gaddy JL (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20-21:781–797. doi:10.1007/BF02936525

    Article  Google Scholar 

  • Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid-State Lett 13:B109. doi:10.1149/1.3456590

    Article  CAS  Google Scholar 

  • Ying K, Al-mashhadani MKH, Hanotu JO, Gilmour DJ, Zimmerman WB (2013) Enhanced mass transfer in microbubble driven airlift bioreactor for microalgal culture. Engineering 2013:735–743. doi:10.4236/eng.2013.59088

    Article  Google Scholar 

  • Zhang F, Cheng S, Pant D, Bogaert GV, Logan BE (2009) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11:2177–2179. doi:10.1016/j.elecom.2009.09.024

    Article  CAS  Google Scholar 

  • Zhang K, Miyachi S, Kurano N (2001) Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO2. Biotechnol Lett 23:21–26. doi:10.1023/A:1026737000160

    Article  CAS  Google Scholar 

  • Zhang X, Pant D, Zhang F, Liu J, He W, Logan BE (2014) Long-term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells. ChemElectroChem 1:1859–1866. doi:10.1002/celc.201402123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by a PhD grant to Suman Bajracharya from VITO’s strategic research funds. The authors acknowledge Mr. Shishir Kanti Pramanik for conducting the gas transfer experiments and taking samples from the reactor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pant.

Additional information

Responsible Editor: Philippe Garrigues

Highlights

• The first application of gas diffusion electrode (GDE) as a biocathode in MES supported CO2 reduction to multi-carbon compounds.

• A mixed culture predominantly exhibiting the homoacetogenic activity catalyzed the bioelectrochemical CO2 reduction.

• Methanogenic activity was successfully suppressed from the mixed culture originating from wastewater sludge after a heat treatment and series of sub-culturing to enrich acetogenic activity.

• The use of GDE enhanced the mass transfer of gaseous substrates compared to the supply through conventional spargers in submerged electrode.

• Bioelectrochemical CO2 reduction with a gas diffusion biocathode produced acetate as the main product and ethanol and butyrate as secondary products.

Electronic supplementary material

ESM. 1

(DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajracharya, S., Vanbroekhoven, K., Buisman, C.J. et al. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ Sci Pollut Res 23, 22292–22308 (2016). https://doi.org/10.1007/s11356-016-7196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7196-x

Keywords

Navigation