Skip to main content
Log in

Levels, sources, and health risk assessment of polycyclic aromatic hydrocarbons in Brno, Czech Republic: a 5-year study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work aimed to determine the seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in airborne PM10 at two background sites (Masná—MS, Líšeň—LN) in Brno over a 5-year period (2009–2013). Samples were collected on quartz filters using a low-volume sampler by continual filtration. Concentrations of PAHs in collected PM10 samples were determined using a gas chromatography with a mass spectrometer as a detector. A different number of PAHs were determined to be at each site, i.e., 11 PAHs at the MS site and six PAHs at the LN site, and similarities between them were identified using non-parametric analysis of variance. Potential sources were identified using principal component analysis (PCA) and PAHs diagnostic ratios. The work also focused on health risk assessment. This was estimated using toxic equivalent factors to calculate individual lifetime cancer risk, which quantifies risk of exposure to PAHs for specific age groups. The average 11-PAH concentrations in M|S site annually ranged from 19.28 ± 19.02 ng m−3 (2011) to 40.37 ± 21.35 ng m−3 (2013). With regard to the LN site, the average six-PAH concentrations annually ranged from 3.64 ± 3.87 ng m−3 (2009) and 5.27 ± 6.19 ng m−3 (2012). PCA and diagnostic ratios indicate the main sources to be traffic emissions and coal combustion. Health risk assessment showed carcinogenic risk under limit value in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamec V (2006) Prevention and possibilities of reduction of consequences of transportation safety risks. Habilitation thesis

  • Adamec V, Jedlička J, Dufek J, et al. (2007) Unlimited pollutants emitted by traffic in the Czech Republic. Bioclimatology and Natural Hazards: International Scientific Conference, Poľana nad Detvou, Slovakia

  • Adamec V, Huzlík J, Libčínský R, Effenberger K (2009) Dust fall measurements in road tunnels. In: Sustainable Development and Bioclimate. pp 183–184

  • Adamec V, Ličbinský R, Cholava R (2011) Transport and health risks of transport. Trans Trans Sc 4:115–134. doi:10.2478/v10158-011-0011-y

    Google Scholar 

  • Air Protection Act. Act no. 201/2012 Coll. Supplement no. 1 to Act no. 201/2012 Coll. The limit and the permitted number of exceedances per calendar year

  • Akyüz M, Çabuk H (2008) Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Sci Total Environ 405:62–70. doi:10.1016/j.scitotenv.2008.07.026

    Article  Google Scholar 

  • Amador-Muñoz O, Bazán-Torija S, Villa-Ferreira SA, et al. (2013) Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10: health risk and sources in southwest Mexico City. Atmos Res 122:199–212. doi:10.1016/j.atmosres.2012.10.003

    Article  Google Scholar 

  • Brits E, Schoeters G, Verschaeve L (2004) Genotoxicity of PM10 and extracted organics collected in an industrial, urban and rural area in Flanders, Belgium. Environ Res 96:109–118. doi:10.1016/j.envres.2004.03.006

    Article  CAS  Google Scholar 

  • Brown AS, Brown RJC (2012) Correlations in polycyclic aromatic hydrocarbon (PAH) concentrations in UK ambient air and implications for source apportionment. J Environ Monit 14:2072–2082. doi:10.1039/c2em10963h

    Article  CAS  Google Scholar 

  • Bu QW, Zhang ZH, Lu S, He FP (2009) Vertical distribution and environmental significance of PAHs in soil profiles in Beijing, China. Environ Geochem Health 31:119–131. doi:10.1007/s10653-008-9171-z

  • Callén MS, de la Cruz MT, López JM, Mastral AM (2011) PAH in airborne particulate matter. Fuel Process Technol 92:176–182. doi:10.1016/j.fuproc.2010.05.019

    Article  Google Scholar 

  • Choi M, Lee M, Rhim T (2013) Dexamethasone-conjugated polyethylenimine/MIF siRNA complex regulation of particulate matter-induced airway inflammation. Biomaterials 34:7453–7461. doi:10.1016/j.biomaterials.2013.05.082

    Article  CAS  Google Scholar 

  • Ciganek M, Neca J, Adamec V, et al. (2004) A combined chemical and bioassay analysis of traffic-emitted polycyclic aromatic hydrocarbons. Sci Total Environ 334-335:141–148. doi:10.1016/j.scitotenv.2004.04.034

    Article  CAS  Google Scholar 

  • CSN EN 12341 (2000) Ambient air—standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter. 24 p.

  • CSN EN 15549. Air quality—standard method for the measurement of the concentration of benzo[a]pyrene in ambient air. 2008. 56 p.

  • CSN P CEN/TS 16645 (2014) Ambient air—method for the measurement of benz[a]anthracene, benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene, dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene. 56 p.

  • Dahle S, Savinov VM, Matishov GG, et al. (2003) Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay. Sci Total Environ 306:57–71. doi:10.1016/S0048-9697(02)00484-9

    Article  CAS  Google Scholar 

  • Darán AC, Gonzalez A (2009) Determination of lead, naphthalene, phenanthrene, anthracene and pyrene in street dust. International Journal of Environmental Science 6:663–670. doi: 10.1007/BF03326107

  • Decree No 330/2012 Coll. On the method of evaluation and assessment of the level of pollution, scope of public information about the level of pollution and during smog situations.

  • De Nicola F, Murena F, Costagliola MA, et al. (2013) A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon. Environ Sci Pollut Res 20:4969–4979. doi:10.1007/s11356-012-1456-1

    Article  Google Scholar 

  • Directive 2008/50/EC of the European parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe [2008] OJ L152/1

  • EPA (2007) Method 610—polynuclear aromatic hydrocarbons

  • Franců E, Schwarzbauer J, Lána R, et al. (2010) Historical changes in levels of organic pollutants in sediment cores from Brno Reservoir, Czech Republic. Water, Air 209:81–91. doi:10.1007/s11270-009-0182-x

    Article  Google Scholar 

  • Gauggel-Lewandowski S, Heussner AH, Steinberg P, et al. (2013) Bioavailability and potential carcinogenicity of polycyclic aromatic hydrocarbons from wood combustion particulate matter in vitro. Chem Biol Interact 206:411–422. doi:10.1016/j.cbi.2013.05.015

    Article  CAS  Google Scholar 

  • Hassanien MA, Abdel-Latif NM (2008) Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. J Hazard Mater 151:247–254. doi:10.1016/j.jhazmat.2007.05.079

    Article  CAS  Google Scholar 

  • He J, Fan S, Meng Q, et al. (2014) Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: distributions, sources and meteorological influences. Atmos Environ 89:207–215. doi:10.1016/j.atmosenv.2014.02.042

    Article  CAS  Google Scholar 

  • ISO 12884 (2000) Ambient air – Determination of total (gas and particle-phase) polycyclic aromatic hydrocarbons—collection on sorbent-backed filters with gas chromatographic/mass spectrometric analyses

  • Jamhari AA, Sahani M, Latif MT, et al. (2014) Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmos Environ 86:16–27. doi:10.1016/j.atmosenv.2013.12.019

    Article  CAS  Google Scholar 

  • Jarvis IWH, Bergvall C, Bottai M, et al. (2013) Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter: the origin, evolution, and impact of doi moi. Toxicol Appl Pharmacol 266:408–418. doi:10.1016/j.taap.2012.11.026

    Article  CAS  Google Scholar 

  • Jung KH, Yan B, Chillrud SN, et al. (2010) Assessment of benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int J Environ Res Public Health 7:1889–1900. doi:10.3390/ijerph7051889

    Article  CAS  Google Scholar 

  • Katsoyiannis A, Terzi E, Cai Q-Y (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69:1337–1339. doi:10.1016/j.chemosphere.2007.05.084

    Article  CAS  Google Scholar 

  • Khadhar S, Higashi T, Hamdi H, et al. (2010) Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants. J Hazard Mater 183:98–102. doi:10.1016/j.jhazmat.2010.06.112

    Article  CAS  Google Scholar 

  • Kim D, Young TM (2009) Significance of indirect deposition on wintertime PAH concentrations in an urban Northern California Creek. Environ Eng Sci 26:269–278. doi:10.1089/ees.2007.0277

    Article  CAS  Google Scholar 

  • Koike E, Yanagisawa R, Takano H (2014) Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells. Atmos Environ 97:529–536. doi:10.1016/j.atmosenv.2014.04.003

    Article  CAS  Google Scholar 

  • Kong S, Shi J, Lu B, et al. (2011) Characterization of PAHs within PM10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China. Atmos Environ 45:3777–3785. doi:10.1016/j.atmosenv.2011.04.029

    Article  CAS  Google Scholar 

  • Landlová L, Čupr P, Franců J, et al. (2014) Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: part I. PAHs, PCBs and OCPs and the matrix chemical composition. Environ Sci Pollut Res 21:6188–6204. doi:10.1007/s11356-014-2571-y

    Article  Google Scholar 

  • Leníček J, Sekyra M, Pandey P, et al. (1997) Polycyclic aromatic hydrocarbons at ‘program Teplice’ sites in the Czech republic. Toxicol Environ Chem 58:25–32. doi:10.1080/02772249709358395

    Article  Google Scholar 

  • Ling W, Dang H, Liu J (2013) In situ gradient distribution of polycyclic aromatic hydrocarbons (PAHs) in contaminated rhizosphere soil: a field study. J Soils Sediments 13:677–685. doi:10.1007/s11368-013-0655-9

    Article  CAS  Google Scholar 

  • Liu D, Gao S, An X (2008) Distribution and source apportionment of polycyclic aromatic hydrocarbons from atmospheric particulate matter PM2.5 in Beijing. Adv Atmos Sci 25:297–305. doi:10.1007/s00376-008-0297-9

    Article  CAS  Google Scholar 

  • Liu J, Man R, Ma S, et al. (2015) Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Marine Pollution Bulletin. doi: 10.1016/j.marpolbul.2015.09.014

  • Lorenzi D, Entwistle JA, Cave M, Dean JR (2011) Determination of polycyclic aromatic hydrocarbons in urban street dust: implications for human health. Chemosphere 83:970–977. doi:10.1016/j.chemosphere.2011.02.020

    Article  CAS  Google Scholar 

  • Machala M, Vondráček J, Bláha L, et al. (2001) Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutat Res/Genet Toxicol Environ Mutagen 497:49–62. doi:10.1016/S1383-5718(01)00240-6

    Article  CAS  Google Scholar 

  • Mantis J, Chaloulakou A, Samara C (2005) PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the greater area of Athens, Greece. Chemosphere 59:593–604. doi:10.1016/j.chemosphere.2004.10.019

    Article  CAS  Google Scholar 

  • Masih A, Saini R, Singhvi R, Taneja A (2010) Concentrations, sources, and exposure profiles of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in the north central part of India. Environ Monit Assess 163:421–431. doi:10.1007/s10661-009-0846-4

    Article  CAS  Google Scholar 

  • Masih J, Singhvi R, Taneja A, et al. (2012) Gaseous/particulate bound polycyclic aromatic hydrocarbons (PAHs), seasonal variation in north central part of rural India. Sustain Cities Soc 3:30–36. doi:10.1016/j.scs.2012.01.001

    Article  Google Scholar 

  • Masiol M, Hofer A, Squizzato S, et al. (2012) Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: a source apportionment. Atmos Environ 60:375–382. doi:10.1016/j.atmosenv.2012.06.073

    Article  CAS  Google Scholar 

  • Mastral A, Lopez J, Callen M, et al. (2003) Spatial and temporal PAH concentrations in Zaragoza, Spain. Sci Total Environ 307:111–124. doi:10.1016/S0048-9697(02)00460-6

    Article  CAS  Google Scholar 

  • Mohanraj R, Solaraj G, Dhanakumar S (2011) Fine particulate phase PAHs in ambient atmosphere of Chennai metropolitan city, India. Environ Sci Pollut Res 18:764–771. doi:10.1007/s11356-010-0423-y

    Article  CAS  Google Scholar 

  • Morman SA, Plumlee GS (2013) The role of airborne mineral dusts in human disease. Aeolian Res 9:203–212. doi:10.1016/j.aeolia.2012.12.001

    Article  Google Scholar 

  • Mostafa AR, Hegazi AH, El-Gayar MS, Andersson JT (2009) Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel 88:95–104. doi:10.1016/j.fuel.2008.08.006

    Article  CAS  Google Scholar 

  • Nehyba S, Hilscherová K, Jarkovský J, et al. (2010) Grain size, geochemistry and organic pollutants in modern fluvial deposits in eastern Moravia (Czech Republic). Environ Earth Sci 60:591–602. doi:10.1007/s12665-009-0199-x

    Article  CAS  Google Scholar 

  • OEHHA—Office of Environmental Health Hazard Assessment (2009) Technical Support Document for Cancer Potency Factors: Methodologies for derivation, listing of available values, and adjustments to allow for early life stage exposures: Appendix A: Hot Spots Unit Risk and Cancer Potency Values. http://www.oehha.org/air/hot_spots/2009/AppendixA.pdf

  • Orona NS, Astort F, Maglione GA, et al. (2014) Direct and indirect air particle cytotoxicity in human alveolar epithelial cells. Toxicol in Vitro 28:796–802. doi:10.1016/j.tiv.2014.02.011

    Article  CAS  Google Scholar 

  • Ozaki N, Takemoto N, Kindaichi T (2010) Nitro-PAHs and PAHs in atmospheric particulate matters and sea sediments in Hiroshima Bay Area, Japan. Water Air Soil Pollut 207:263–271. doi:10.1007/s11270-009-0134-5

    Article  CAS  Google Scholar 

  • Pandey PK, Patel KS, Lenicek J (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India. Environmental Monitoring and Assessment 59:287–319. doi: 10.1023/A:1006169605672

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924. doi:10.1016/S1352-2310(02)00206-6

    Article  CAS  Google Scholar 

  • Pies C, Hoffmann B, Petrowsky J, et al. (2008) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72:1594–1601. doi:10.1016/j.chemosphere.2008.04.021

    Article  CAS  Google Scholar 

  • Plachá D, Raclavská H, Matýsek D, Rümmeli MH (2009) The polycyclic aromatic hydrocarbon concentrations in soils in the region of Valasske Mezirici, the Czech Republic. Geochemical Transactions 10:12-. doi: 10.1186/1467–4866–10-12

  • Prokeš R, Vrana B, Komprdová K, Klánová J (2014) Annual dynamics of persistent organic pollutants in various aquatic matrices: a case study in the Morava River in Zlín district, Czech Republic. J Soils Sediments. doi:10.1007/s11368-014-0931-3

  • Ravindra K, Sokhi R, Vangrieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921. doi:10.1016/j.atmosenv.2007.12.010

    Article  CAS  Google Scholar 

  • Rehwagen M, Müller A, Massolo L, et al. (2005) Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Sci Total Environ 348:199–210. doi:10.1016/j.scitotenv.2004.12.050

    Article  CAS  Google Scholar 

  • Saeedi M, Li LY, Salmanzadeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227-228:9–17. doi:10.1016/j.jhazmat.2012.04.047

    Article  CAS  Google Scholar 

  • Shang J, Chen J, Shen Z, et al. (2015) Photochemical degradation of PAHs in estuarine surface water: effects of DOM, salinity, and suspended particulate matter. Environ Sci Pollut Res 22:12374–12383. doi:10.1007/s11356-015-4543-2

    Article  CAS  Google Scholar 

  • Shi G-L, Feng Y-C, Wu J-H, et al. (2009) Source identification of polycyclic aromatic hydrocarbons in urban particulate matter of Tangshan. China Aerosol and Air Qual Res. doi:10.4209/aaqr.2008.12.0063

    Google Scholar 

  • Singare PU (2015) Studies on polycyclic aromatic hydrocarbons in surface sediments of Mithi River near Mumbai, India: assessment of sources, toxicity risk and biological impact. Mar Pollut Bull. doi:10.1016/j.marpolbul.2015.09.057

    Google Scholar 

  • Slezakova K, Castro D, Delerue-Matos C, et al. (2013) Impact of vehicular traffic emissions on particulate-bound PAHs: levels and associated health risks. Atmos Res 127:141–147. doi:10.1016/j.atmosres.2012.06.009

    Article  CAS  Google Scholar 

  • Teixeira EC, Agudelo-Castañeda DM, Fachel JMG, et al. (2012) Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the metropolitan area of Porto Alegre, RS, Brazil. Atmos Res 118:390–403. doi:10.1016/j.atmosres.2012.07.004

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119. doi:10.1016/j.envpol.2011.10.025

    Article  CAS  Google Scholar 

  • US EPA (2011) Exposure factors handbook. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA TO-13A (1999) Compendium method TO-13A determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography/mass spectrometry (GC/MS)

  • Villar-Vidal M, Lertxundi A, Martinez López de Dicastillo MD, et al. (2014) Air polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 in a North Cantabric coast urban environment. Chemosphere 99:233–238. doi:10.1016/j.chemosphere.2013.11.006

    Article  CAS  Google Scholar 

  • Wang J, Geng NB, Xu YF, et al. (2014) PAHs in PM2.5 in Zhengzhou: concentration, carcinogenic risk analysis, and source apportionment. Environ Monit Assess 186:7461–7473. doi:10.1007/s10661-014-3940-1

    Article  CAS  Google Scholar 

  • Wang W, Massey Simonich SL, Xue M, et al. (2010) Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environ Pollut 158:1245–1251. doi:10.1016/j.envpol.2010.01.021

    Article  CAS  Google Scholar 

  • Wang W, M-juan H, Kang Y, et al. (2011) Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ 409:4519–4527. doi:10.1016/j.scitotenv.2011.07.030

    Article  CAS  Google Scholar 

  • Wiriya W, Prapamontol T, Chantara S (2013) PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): seasonal variations, source identification, health risk assessment and their relationship to air-mass movement. Atmos Res 124:109–122. doi:10.1016/j.atmosres.2012.12.014

    Article  CAS  Google Scholar 

  • Xue X, You Y, Wu J, et al. (2014) Exposure measurement, risk assessment and source identification for exposure of traffic assistants to particle-bound PAHs in Tianjin, China. J Environ Sci 26:448–457. doi:10.1016/S1001-0742(13)60427-1

    Article  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, et al. (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515. doi:10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

  • Zereini F, Wiseman CL (2010) Urban airborne particulate matter: origin, chemistry, fate, and health impacts. Springer, New York

    Google Scholar 

  • Zhang XL, Tao S, Liu WX, et al. (2005) Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ Sci 39:9109–9114. doi:10.1021/es0513741

    Article  CAS  Google Scholar 

  • Zhang W, Zhang S, Wan C, et al. (2008) Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ Pollut 153:594–601. doi:10.1016/j.envpol.2007.09.004

    Article  CAS  Google Scholar 

  • Zhao H, Yin C, Chen M, et al. (2009) Size distribution and diffuse pollution impacts of PAHs in street dust in urban streams in the Yangtze River Delta. J Environ Sci 21:162–167. doi:10.1016/S1001-0742(08)62245-7

    Article  Google Scholar 

Download references

Acknowledgments

This work is an output of research and scientific activities of this project LO1202 with financial support from the MEYS under the program NPU I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Bulejko.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 15 kb)

ESM 3

(DOCX 17 kb)

ESM 4

(DOCX 330 kb)

ESM 5

(DOCX 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulejko, P., Adamec, V., Schüllerová, B. et al. Levels, sources, and health risk assessment of polycyclic aromatic hydrocarbons in Brno, Czech Republic: a 5-year study. Environ Sci Pollut Res 23, 20462–20473 (2016). https://doi.org/10.1007/s11356-016-7172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7172-5

Keywords

Navigation