Skip to main content
Log in

A system coupling hybrid biological method with UV/O3 oxidation and membrane separation for treatment and reuse of industrial laundry wastewater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The possibilities of application of a three-step system combining hybrid biological treatment followed by advanced UV/O3 oxidation with in situ generated O3 and membrane separation (ultrafiltration (UF) and nanofiltration (NF)) to treat and reuse the wastewater from an industrial laundry are presented. By the application of a hybrid moving bed biofilm reactor (HMBBR), the total organic carbon concentration was reduced for about 90 %. However, since the HMBBR effluent still contained organic contaminants as well as high concentrations of inorganic ions and exhibited significant turbidity (8.2 NTU), its further treatment before a possible reuse in the laundry was necessary. The UV/O3 pretreatment prior to UF was found to be an efficient method of the membrane fouling alleviation. During UF, the turbidity of wastewater was reduced below 0.3 NTU. To remove the inorganic salts, the UF permeate was further treated during NF. The NF permeate exhibited very low conductivity (27–75 μS/cm) and contained only small amounts of Ca2+ and Mg2+; thus ,it could be reused at any stage of the laundry process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AOP:

Advanced oxidation process

BOD:

Biological oxygen demand

BSA:

Bovine serum albumin

COD:

Chemical oxygen demand

DAF:

Dissolved air flotation

DOC:

Dissolved organic carbon

GAC:

Granular activated carbon

HA:

Humic acid

HMBBR:

Hybrid moving bed biofilm reactor

IC:

Ion chromatography

MBR:

Membrane bioreactor

MF:

Microfiltration

MLSS:

Mixed liquor suspended solids

NF:

Nanofiltration

NOM:

Natural organic matter

NTU:

Nephelometric turbidity unit

PMR:

Photocatalytic membrane reactor

PWF:

Pure water flux

RO:

Reverse osmosis

SA:

Sodium alginate

TC:

Total carbon

TDS:

Total dissolved solids

TIC:

Total inorganic carbon

TMP:

Transmembrane pressure

TOC:

Total organic carbon

UF:

Ultrafiltration

UV/O3 :

AOP system utilizing ultraviolet light and ozonation

References

  • Agustina TE, Ang HM, Vareek VK (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C 6:264–273. doi:10.1016/j.jphotochemrev.2005.12.003

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59. doi:10.1016/S0920-5861(99)00102-9

    Article  CAS  Google Scholar 

  • Braga JK, Varesche MBA (2014) Commercial laundry water characterisation. Am J Anal Chem 5:8–16. doi:10.4236/ajac.2014.51002

    Article  CAS  Google Scholar 

  • Cheng X, Liang H, Ding A, Qu F, Shao S, Liu B, Wang H, Wu D, Li G (2016) Effects of pre-ozonation on the ultrafiltration of different natural organic matter (NOM) fractions: membrane fouling mitigation, prediction and mechanism. J Membr Sci 505:15–25. doi:10.1016/j.memsci.2016.01.022

    Article  CAS  Google Scholar 

  • Chiu TY, James AE (2006) Sustainable flux enhancement in non-circular ceramic membranes on wastewater using the Fenton process. J Membr Sci 279:347–353. doi:10.1016/j.memsci.2005.12.020

    Article  CAS  Google Scholar 

  • Ciabatti I, Cesaro F, Faralli L, Fatarella E, Tognotti F (2009) Demonstration of a treatment system for purification and reuse of laundry wastewater. Desalination 245:451–459. doi:10.1016/j.desal.2009.02.008

    Article  Google Scholar 

  • Deowan SA, Bouhadjar SI, Hoinkis J (2015) 5–membrane bioreactors for water treatment. In: Basile A, Cassano A, Rastogi NK (eds) Advances in membrane technologies for water treatment. Materials, processes and applications, Woodhead Publishing Series in Energy: Number 75, 1st edn. Elsevier Science & Technology, Cambridge, pp. 155–184

    Chapter  Google Scholar 

  • Esplugas S, Giménez J, Contreras S, Pascual E, Rodríguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042. doi:10.1016/S0043-1354(01)00301-3

    Article  CAS  Google Scholar 

  • Faouzi M, Cañizares P, Gadri A, Lobato J, Nasr B, Paz R, Rodrigo MA, Saez C (2006) Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochim Acta 52:325–331. doi:10.1016/j.electacta.2006.05.011

    Article  CAS  Google Scholar 

  • Feng J, Sun Y, Zheng Z, Zhang J, Li S, Tian Y (2007) Treatment of tannery wastewater by electrocoagulation. J Environ Sci 19:1409–1415. doi:10.1016/S1001-0742(07)60230-7

    Article  CAS  Google Scholar 

  • Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Membr Sci 100:259–272. doi:10.1016/0376-7388(94)00265-Z

    Article  CAS  Google Scholar 

  • Ganiyu SO, van Hullebusch ED, Cretin M, Esposito G, Oturan MA (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156:891–914. doi:10.1016/j.seppur.2015.09.059

    Article  CAS  Google Scholar 

  • von Gunten U (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37:1443–1467. doi:10.1016/S0043-1354(02)00457-8

    Article  Google Scholar 

  • Hoinkis J, Panten V (2008) Wastewater recycling in laundries—from pilot to large-scale plant. Chem Eng Process Process Intensif 47:1159–1164. doi:10.1016/j.cep.2007.12.010

    Article  CAS  Google Scholar 

  • Hoinkis J, Deowan SA, Panten V, Figoli A, Huang RR, Drioli E (2012) Membrane bioreactor (MBR) technology—a promising approach for industrial water reuse. Procedia Eng 33:234–241. doi:10.1016/j.proeng.2012.01.1199

    Article  CAS  Google Scholar 

  • Janpoor F, Torabian A, Khatibikamal V (2011) Treatment of laundry waste-water by electrocoagulation. J Chem Technol Biotechnol 86:1113–1120. doi:10.1002/jctb.2625

    Article  CAS  Google Scholar 

  • Jeong K, Lee D-S, Kim D-G, Ko S-O (2014) Effects of ozonation and coagulation on effluent organic matter characteristics and ultrafiltration membrane fouling. J Environ Sci (China) 26:1325–1331. doi:10.1016/S1001-0742(13)60607-5

    Article  CAS  Google Scholar 

  • Jiang L, Choo KH (2016) Photocatalytic mineralization of secondary effluent organic matter with mitigating fouling propensity in a submerged membrane photoreactor. Chem Eng J 288:798–805. doi:10.1016/j.cej.2015.12.060

    Article  CAS  Google Scholar 

  • Kern DI, Schwaickhardt R, Mohr G, Lobo EA, Kist LT, Machado ÊL (2013) Toxicity and genotoxicity of hospital laundry wastewaters treated with photocatalytic ozonation. Sci Total Environ 443:566–572. doi:10.1016/j.scitotenv.2012.11.023

    Article  CAS  Google Scholar 

  • Kim J, Davies SHR, Baumann MJ, Tarabara VV, Masten SJ (2008) Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation–ceramic ultrafiltration system treating natural waters. J Membr Sci 311:165–172. doi:10.1016/j.memsci.2007.12.010

    Article  CAS  Google Scholar 

  • Marcucci M, Ciardelli G, Matteucci A, Ranieri L, Russo M (2002) Experimental campaigns on textile wastewater for reuse by means of different membrane processes. Desalination 149:137–143. doi:10.1016/S0011-9164(02)00745-2

    Article  CAS  Google Scholar 

  • Mozia S, Brożek P, Przepiórski J, Tryba B, Morawski AW (2012) Immobilized TiO2 for phenol degradation in a pilot-scale photocatalytic reactor. J Nanomater. doi:10.1155/2012/949764 Article ID 949764, 10 pages

    Google Scholar 

  • Mozia S, Darowna D, Szymański K, Grondzewska S, Borchert K, Wróbel R, Morawski AW (2014) Performance of two photocatalytic membrane reactors for treatment of primary and secondary effluents. Catal Today 236:135–145. doi:10.1016/j.cattod.2013.12.049

    Article  CAS  Google Scholar 

  • Mozia S, Szymański K, Michalkiewicz B, Tryba B, Toyoda M, Morawski AW (2015) Effect of process parameters on fouling and stability of MF/UF TiO2 membranes in a photocatalytic membrane reactor. Sep Purif Technol 142:137–148. doi:10.1016/j.seppur.2014.12.047

    Article  CAS  Google Scholar 

  • Munter R (2001) Advanced oxidation processes—current status and prospects. Proc Est Acad Sci Chem 50:59–80

    CAS  Google Scholar 

  • Nicolaidis C, Vyrides I (2014) Closing the water cycle for industrial laundries: an operational performance and techno-economic evaluation of a full-scale membrane bioreactor system. Resour Conserv Recycl 92:128–135. doi:10.1016/j.resconrec.2014.09.001

    Article  Google Scholar 

  • Ochando-Pulido JM, Stoller M (2015) Kinetics and boundary flux optimization of integrated photocatalysis and ultrafiltration process for two-phase vegetation and olive washing wastewaters treatment. Chem Eng J 279:387–395. doi:10.1016/j.cej.2015.05.050

    Article  CAS  Google Scholar 

  • Ochando-Pulido JM, Hodaifa G, Martinez-Ferez A (2012) Fouling inhibition upon Fenton-like oxidation pretreatment for olive mill wastewater reclamation by membrane process. Chem Eng Process 62:89–98. doi:10.1016/j.cep.2012.09.004

    Article  CAS  Google Scholar 

  • Oh BS, Jang HY, Cho J, Lee S, Lee E, Kim IS, Hwang M, Kang JW (2009) Effect of ozone on microfiltration as a pretreatment of seawater reverse osmosis. Desalination 238:90–97. doi:10.1016/j.desal.2008.01.039

    Article  CAS  Google Scholar 

  • Rivas FJ, Carbajo M, Beltrán F, Gimeno O, Frades J (2008) Comparison of different advanced oxidation processes (AOPs) in the presence of perovskites. J Hazard Mater 155:407–414. doi:10.1016/j.jhazmat.2007.11.081

    Article  CAS  Google Scholar 

  • Shang X, Kim HC, Huang JH, Dempsey BA (2015) Coagulation strategies to decrease fouling and increase critical flux and contaminant removal in microfiltration of laundry wastewater. Sep Purif Technol 147:44–50. doi:10.1016/j.seppur.2015.04.005

    Article  CAS  Google Scholar 

  • Song W, Ravindran V, Koel BE, Pirbazari M (2004) Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization. J Membr Sci 241:143–160. doi:10.1016/j.memsci.2004.04.034

    Article  CAS  Google Scholar 

  • Šostar-Turk S, Petrinić I, Simonič M (2005) Laundry wastewater treatment using coagulation and membrane filtration. Resour Conserv Recycl 44:185–196. doi:10.1016/j.resconrec.2004.11.002

    Article  Google Scholar 

  • Staehelln J, Holgné J (1982) Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ Sci Technol 16:676–681. doi:10.1021/es00104a009

  • Sumisha A, Arthanareeswaran G, Thuyavan YL, Ismail AF, Chakraborty S (2015) Treatment of laundry wastewater using polyethersulfone/polyvinylpyrrolidone ultrafiltration membranes. Ecotoxicol Environ Saf 121:174–179. doi:10.1016/j.ecoenv.2015.04.004

    Article  CAS  Google Scholar 

  • Tsuge M, Tsuji K, Kawai A, Shibuya K (2013) Photochemistry of the ozone-water complex in cryogenic neon, argon, and krypton matrixes. J Phys Chem A 117:13105–13111. doi:10.1021/jp4094723

    Article  CAS  Google Scholar 

  • Zhang X, Fan L, Roddick FA (2015) Effect of feed water pre-treatment using UV/H2O2 for mitigating the fouling of a ceramic MF membrane caused by soluble algal organic matter. J Membr Sci 493:683–689. doi:10.1016/j.memsci.2015.07.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financed by The National Centre for Research and Development in Poland within the Applied Research Programme (project no. PBS2/B9/23/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Mozia.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozia, S., Janus, M., Brożek, P. et al. A system coupling hybrid biological method with UV/O3 oxidation and membrane separation for treatment and reuse of industrial laundry wastewater. Environ Sci Pollut Res 23, 19145–19155 (2016). https://doi.org/10.1007/s11356-016-7111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7111-5

Keywords

Navigation