Skip to main content
Log in

The application of catalyst-recovered SnO2 as an anode material for lithium secondary batteries

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We studied the electrochemical characteristics of tin dioxide (SnO2) recovered from waste catalyst material which had been previously used in a polymer synthesis reaction. In order to improve the electrochemical performance of the SnO2 anode electrode, we synthesized a nanocomposite of recovered SnO2 and commercial iron oxide (Fe2O3) (weight ratio 95:5) using a solid state method. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analyses revealed an additional iron oxide phase within a porous nanocomposite architecture. The electrochemical characterizations were based on galvanostatic charge–discharge (CD) curves, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). In the first discharge, the capacity of the SnO2–Fe2O3 nanocomposite was 1700 mAh g−1, but was reduced to about 1200 mAh g−1 in the second discharge. Thereafter, a discharge capacity of about 1000 mAh g−1was maintained up to the 20th cycle. The SnO2–Fe2O3 nanocomposite showed better reversible capacities and rate capabilities than either the recovered SnO2 or commercial Fe2O3 nanoparticle samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Chernova NA, Roppolo M, Dillonb AC, Whittingham MS (2009) Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem 19:2526–2552

    Article  CAS  Google Scholar 

  • Courtney I, Dahn JR (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144:2045–2052

    Article  CAS  Google Scholar 

  • Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336–2340

    Article  CAS  Google Scholar 

  • Hassoun J, Derrien G, Panero S, Scrosati B (2008) A nanostructured Sn–C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175

    Article  CAS  Google Scholar 

  • Larcher D, Masquelier C, Bonnin D, Chabre Y, Masson V, Leriche J-B, Tarascon J-M (2003) Effect of particle size on lithium intercalation into α Fe2O3. J Electrochem Soc 150:A133–A139

    Article  CAS  Google Scholar 

  • Rahman MM, Glushenkov AM, Ramireddy T, Tao T, Chen Y (2013) Enhanced lithium storage in Fe2O3–SnO2–C nanocomposite anode with a breathable structure. Nanoscale 5:4910–4916

    Article  CAS  Google Scholar 

  • Reddy MV, Yu T, Sow C-H, Shen ZX, Lim CT, Subba Rao GV, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799

    Article  CAS  Google Scholar 

  • Sun B, Horvat J, Kim HS, Kim WS, Ahn J, Wang G (2010) Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J Phys Chem C 114:18753–18761

    Article  CAS  Google Scholar 

  • Villarreal MS, Kharisov BI, Torres-Martínez LM, Elizondo VN (1999) Recovery of vanadium and molybdenum from spent petroleum catalyst of PEMEX. Ind Eng Chem Res 38:4624–4628

    Article  CAS  Google Scholar 

  • Wang Y, Xu J, Wu H, Xu M, Zheng P, Zheng G (2012) Hierarchical SnO2–Fe2O3 heterostructures as lithium-ion battery anodes. J Mater Chem 22:21923–21927

    Article  CAS  Google Scholar 

  • Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  • Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  CAS  Google Scholar 

  • Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah MR, Wang C (2013) Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett 13:470–474

    Article  CAS  Google Scholar 

  • Xue XY, Chen ZH, Xing LL, Yuan S, Chen YJ (2011) SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem Commun 47:5205–5207

    Article  CAS  Google Scholar 

  • Yu Y, Lin G, Zhu C, van Aken PA, Maier J (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc 131:15984–15985

    Article  CAS  Google Scholar 

  • Zeng W, Zheng F, Li R, Yang Z, Li Y, Liu J (2012) Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale 4:2760–2765

    Article  CAS  Google Scholar 

  • Zhao Y, Li J, Ding Y, Guan L (2011) Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem Commun 47:7416–7418

    Article  CAS  Google Scholar 

  • Zhou W, Cheng C, Liu J, Tay YY, Jiang J, Jia X, Zhang J, Gong H, Hng HH, Yu T, Fan HJ (2011) Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv Funct Mater 21:2439–2445

    Article  CAS  Google Scholar 

  • Zhu J, Lu Z, Oo MO, Hng HH, Ma J, Zhang H, Yan Q (2011a) Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2–Fe2O3/rGO composite nanostructures. J Mater Chem 21:12770–12776

    Article  CAS  Google Scholar 

  • Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011b) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Ulsan Green Environment Center (UGEC), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Sun Ryu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, DJ., Jung, HW., Lee, SH. et al. The application of catalyst-recovered SnO2 as an anode material for lithium secondary batteries. Environ Sci Pollut Res 23, 15015–15022 (2016). https://doi.org/10.1007/s11356-016-6640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6640-2

Keywords

Navigation