Skip to main content

Advertisement

Log in

Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sediment samples from the coastal area of Asaluyeh harbor were collected during autumn and spring 2015. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) were measured to assess the sediment quality and potential ecological risks. The average concentrations (and relative standard deviation (RSD)) of AVS in the industrial sediments were 12.32 μmol/g (36.91) and 6.34 μmol/g (80.05) in autumn and spring, respectively, while in the urban area, these values were 0.44 μmol/g (123.50) and 0.31 μmol/g (160.0) in autumn and spring, respectively. The average concentrations of SEM (and RSD) in the industrial sediments were 15.02 μmol/g (14.38) and 12.34 μmol/g (20.65) in autumn and spring, respectively, while in the urban area, these values were 1.10 μmol/g (43.03) and 1.06 μmol/g (55.59) in autumn and spring, respectively. Zn was the predominant component (34.25–86.24 %) of SEM, while the corresponding value for Cd, much more toxic ingredient, was less than 1 %. Some of the coastal sediments in the harbor of Asaluyeh (20 and 47 % in autumn and spring, respectively) had expected adverse biological effects based on the suggested criterion by United States Environmental Protection Agency (USEPA), while most stations (80 and 53 % in autumn and spring, respectively) had uncertain adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen HE, Fu G, Deng B (1993) Analysis of acid‐volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1453

    Article  CAS  Google Scholar 

  • Ankley GT (1996) Evaluation of metal/acid-volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates. Environ Toxicol Chem 15:2138–2146

    Article  CAS  Google Scholar 

  • Asami H, Aida M, Watanabe K (2005) Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Appl Environ Microbiol 71:2925–2933

    Article  CAS  Google Scholar 

  • Azin R, Mosleh AM (2010) Corporate social responsibility related to oil, gas and petrochemical industry-case study: Assaluyeh, Iran. In: SPE International Conference on Health, Safety and Environment in oil and gas exploration and production. Society of petroleum engineers

  • Becking LB, Kaplan IR, Moore D (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. J Geol 68:243–284

    Article  Google Scholar 

  • Berner RA (1963) Electrode studies of hydrogen sulfide in marine sediments. Geochim Cosmochim Acta 27:563–575

    Article  CAS  Google Scholar 

  • Berry W et al (1996) Predicting the toxicity of metal‐spiked laboratory sediments using acid‐volatile sulfide and interstitial water normalizations. Environ Toxicol Chem 15:2067–2079

    Article  CAS  Google Scholar 

  • Brix KV, Keithly J, Santore RC, DeForest DK, Tobiason S (2010) Ecological risk assessment of zinc from stormwater runoff to an aquatic ecosystem. Sci Total Environ 408:1824–1832

    Article  CAS  Google Scholar 

  • Brouwer H, Murphy TP (1994) Diffusion method for the determination of acid‐volatile sulfides (AVS) in sediment. Environ Toxicol Chem 13:1273–1275

    Article  CAS  Google Scholar 

  • Buchman MF (2008) NOAA screening quick reference tables office of response and restoration division. National Oceanic and Atmospheric Administration, Seattle, p 2

    Google Scholar 

  • Burford MA et al (2003) A synthesis of dominant ecological processes in intensive shrimp ponds and adjacent coastal environments in NE Australia. Mar Pollut Bull 46:1456–1469

    Article  CAS  Google Scholar 

  • Burton GA et al (2005) Field validation of sediment zinc toxicity. Environ Toxicol Chem 24:541–553

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential

  • Campana O, Rodríguez A, Blasco J (2005) Bioavailability of heavy metals in the Guadalete River Estuary (SW Iberian Peninsula). Cienc Mar 31(1B): 135–147

  • Campana O, Rodríguez A, Blasco J (2009) Identification of a potential toxic hot spot associated with AVS spatial and seasonal variation. Arch Environ Contam Toxicol 56:416–425

    Article  CAS  Google Scholar 

  • Casas AM, Crecelius EA (1994) Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments. Environ Toxicol Chem 13:529–536

    Article  CAS  Google Scholar 

  • Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9

    CAS  Google Scholar 

  • Celino JJ, de Oliveira OMC, Hadlich GM, de Souza Queiroz AF, Garcia KS (2008) Assessment of contamination by trace metals and petroleum hydrocarbons in sediments from the tropical estuary of Todos os Santos Bay Brazil. Braz J Geol 38:753–760

    Google Scholar 

  • Cesar A, Pereira CDS, Santos AR, Abessa DMS, Fernández N, Choueri RB, DelValls TA (2006) Ecotoxicological assessment of sediments from the Santos and São Vicente estuarine system-Brazil. Braz J Oceanogr 54:55–63

    Article  Google Scholar 

  • Chai M, Shen X, Li R, Qiu G (2015) The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM–AVS analysis. Mar Pollut Bull. doi:10.1016/j.marpolbul.2015.05.057

    Google Scholar 

  • Cooper DC, Morse JW (1998) Biogeochemical controls on trace metal cycling in anoxic marine sediments. Environ Sci Technol 32:327–330

    Article  CAS  Google Scholar 

  • Davis J, Yarbrough H (1966) Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans. Chem Geol 1:137–144

    Article  Google Scholar 

  • De Jonge M, Dreesen F, De Paepe J, Blust R, Bervoets L (2009) Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions? Environ Sci Technol 43:4510–4516

    Article  CAS  Google Scholar 

  • De Jonge M, Blust R, Bervoets L (2010) The relation between acid volatile sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology. Environ Pollut 158:1381–1391

    Article  CAS  Google Scholar 

  • De Jonge M, Teuchies J, Meire P, Blust R, Bervoets L (2012a) The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res 46:2205–2214

    Article  CAS  Google Scholar 

  • De Jonge M, Teuchies J, Meire P, Blust R, Bervoets L (2012b) The impact of increased oxygen conditions on metal-contaminated sediments part II: effects on metal accumulation and toxicity in aquatic invertebrates. Water Res 46:3387–3397

    Article  CAS  Google Scholar 

  • De Lange H, Van Griethuysen C, Koelmans A (2008) Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses. Environ Pollut 151:243–251

    Article  CAS  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502

    Article  Google Scholar 

  • Di Toro DM et al (2005) Predicting sediment metal toxicity using a sediment biotic ligand model: methodology and initial application. Environ Toxicol Chem 24:2410–2427

    Article  Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack F (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  CAS  Google Scholar 

  • Du H, Huang X, Huang H, Zheng B, Chen W (2011) The spatiotemporal distribution of acid-volatile sulfide (AVS) and sulfate-reducing bacteria (SRB) in the surface deposits at Shen’ao Bay. Trans Oceanol Limnol 5:85–93

    Google Scholar 

  • Durán I, Sánchez-Marín P, Beiras R (2012) Dependence of Cu, Pb and Zn remobilization on physicochemical properties of marine sediments. Mar Environ Res 77:43–49

    Article  CAS  Google Scholar 

  • EPA (2010) Guidance on evaluating sediment contaminant results, division of surface water, standards and technical support section environmental protection agency

  • Fang T, Li X, Zhang G (2005) Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicol Environ Saf 61:420–431

    Article  CAS  Google Scholar 

  • Feng L, Haiting W, Deli W (2004) Spatial distributions of heavy metals from the Laizhou Bay Littoral Wetland. Adv Mar Sci 22:486–492

    Google Scholar 

  • Fernandes L, Nayak G, Ilangovan D, Borole D (2011) Accumulation of sediment, organic matter and trace metals with space and time, in a creek along Mumbai coast, India. Estuar Coast Shelf Sci 91:388–399

    Article  CAS  Google Scholar 

  • Gan HY, Lin JQ, Liang K, Xia Z (2013) Selected trace metals (As, Cd and Hg) distribution and contamination in the coastal wetland sediment of the northern Beibu Gulf, South China. Sea Mar Pollut Bull 66:252–258

    Article  CAS  Google Scholar 

  • Gao X, Chen C-TA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46:1901–1911

    Article  CAS  Google Scholar 

  • Gao X, Li P, Chen C-TA (2013) Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results. Mar Pollut Bull 72:281–288

    Article  CAS  Google Scholar 

  • Guo X, Huang C (2006) Distribution and source of heavy metal elements in sediments of Zhanjiang Harbor. J Trop Oceanogr 25:91–96

    CAS  Google Scholar 

  • Hansen D et al (1996) Predicting the toxicity of metal‐contaminated field sediments using interstitial concentration of metals and acid‐volatile sulfide normalizations. Environ Toxicol Chem 15:2080–2094

    Article  CAS  Google Scholar 

  • Hinkey LM, Zaidi BR (2007) Differences in SEM–AVS and ERM–ERL predictions of sediment impacts from metals in two US Virgin Islands marinas. Mar Pollut Bull 54:180–185

    Article  CAS  Google Scholar 

  • Hou D, He J, Lü C, Ren L, Fan Q, Wang J, Xie Z (2013) Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol Environ Saf 93:135–144

    Article  CAS  Google Scholar 

  • Hu N, Shi X, Liu J, Huang P, Yang G, Liu Y (2011) Distributions and impacts of heavy metals in the surface sediments of the Laizhou Bay. Adv Mar Sci 29:63–72

    Google Scholar 

  • Hu N, Liu J, Huang P, Shi X, Zhu A, Ma D (2012) The distribution and risk assessment of metals in surface sediments of the Laizhou Bay in the Bohai Sea. Acta Oceanol Sin 34:92–100

    Article  CAS  Google Scholar 

  • Hübner R, Astin KB, Herbert RJ (2009) Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. J Environ Monit 11:713–722

    Article  CAS  Google Scholar 

  • Huo W, Li Q, Ma X (2001) Study on acid-volatile sulfide (AVS) of sediment in mariculture region of Jiaozhou Bay. Sci Geogr Sin 21:135–139

    Google Scholar 

  • Ingersoll C et al (2002) Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in northwestern Indiana, USA. Arch Environ Contam Toxicol 43:156–167

    Article  CAS  Google Scholar 

  • Ip CC, Li X-D, Zhang G, Wai OW, Li Y-S (2007) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ Pollut 147:311–323

    Article  CAS  Google Scholar 

  • Jack R, Ringelberg D, White D (1992) Differential corrosion rates of carbon steel by combinations of Bacillus sp., Hafnia alvei and Desulfovibrio gigas established by phospholipid analysis of electrode biofilm. Corros Sci 33:1843–1853

    Article  CAS  Google Scholar 

  • Jiang W, Pohlmann T, Sündermann J, Feng S (2000) A modelling study of SPM transport in the Bohai Sea. J Mar Syst 24:175–200

    Article  Google Scholar 

  • Jiang Z, Ma Q, Wang X, Zhang Y (2005) Study on the AVS in surface sediment in the North Area of the Bohai Bay. Mar Environ Sci 24:6–8

    CAS  Google Scholar 

  • Jingchun L, Chongling Y, Spencer KL, Ruifeng Z, Haoliang L (2010) The distribution of acid-volatile sulfide and simultaneously extracted metals in sediments from a mangrove forest and adjacent mudflat in Zhangjiang Estuary, China. Mar Pollut Bull 60:1209–1216

    Article  CAS  Google Scholar 

  • Keene AF, Johnston SG, Bush RT, Burton ED, Sullivan LA (2010) Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia. Mar Pollut Bull 60:620–626

    Article  CAS  Google Scholar 

  • Kim J-G, Kim Y-W (2001) Cathodic protection criteria of thermally insulated pipeline buried in soil. Corros Sci 43:2011–2021

    Article  CAS  Google Scholar 

  • Lee B-G, Griscom SB, Lee J-S, Choi HJ, Koh C-H, Luoma SN, Fisher NS (2000a) Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science 287:282–284

    Article  CAS  Google Scholar 

  • Lee B-G, Lee J-S, Luoma SN, Choi HJ, Koh C-H (2000b) Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments. Environ Sci Technol 34:4517–4523

    Article  CAS  Google Scholar 

  • Li F et al (2013) Ecological risks assessment and pollution source identification of trace elements in contaminated sediments from the Pearl River Delta, China. Biol Trace Elem Res 155:301–313

    Article  CAS  Google Scholar 

  • Li F et al (2014a) Coastal surface sediment quality assessment in Leizhou Peninsula (South China Sea) based on SEM–AVS analysis. Mar Pollut Bull 84:424–436

    Article  CAS  Google Scholar 

  • Li L, Wang X, Liu J, Shi X, Ma D (2014b) Assessing metal toxicity in sediments using the equilibrium partitioning model and empirical sediment quality guidelines: a case study in the nearshore zone of the Bohai Sea, China. Mar Pollut Bull 85:114–122

    Article  CAS  Google Scholar 

  • Li L, Wu H, van Gestel CA, Peijnenburg WJ, Allen HE (2014c) Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environ Pollut 188:144–152

    Article  CAS  Google Scholar 

  • Lin S, Huang K-M, Chen S-K (2002) Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment. Deep-Sea Res I Oceanogr Res Pap 49:1837–1852

    Article  CAS  Google Scholar 

  • Liu J, Yan C, Macnair MR, Hu J, Li Y (2007) Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in mangrove sediments from the Jiulong River Estuary, Fujian, China. Environ Sci Pollut Res Int 14:345–349

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Luoma SN (1989) Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia 176:379–396

    Article  Google Scholar 

  • Machado W, Carvalho M, Santelli R, Maddock J (2004) Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Mar Pollut Bull 49:89–92

    Article  CAS  Google Scholar 

  • Machado W, Santelli RE, Carvalho M, Molisani MM, Barreto RC, Lacerda LD (2008) Relation of reactive sulfides with organic carbon, iron, and manganese in anaerobic mangrove sediments: implications for sediment suitability to trap trace metals. J Coast Res 24:25–32

    Article  CAS  Google Scholar 

  • Mokhtarani B, Moghaddam MRA, Mokhtarani N, Khaledi HJ (2006a) Report: future industrial solid waste management in pars special economic energy zone (PSEEZ), Iran. Waste Manag Res 24:283–288

    Article  Google Scholar 

  • Mokhtarani BAMMR, Mokhtarani N, KhalediH J (2006b) Future industrial solid waste management in Pars Special Economic Energy Zone (PSEEZ), Iran. Waste Manag Res 24:1–6

    Article  Google Scholar 

  • Monikh FA, Safahieh A, Savari A, Doraghi A (2013) Heavy metal concentration in sediment, benthic, benthopelagic, and pelagic fish species from Musa Estuary (Persian Gulf). Environ Monit Assess 185:215–222

    Article  CAS  Google Scholar 

  • Monikh FA, Maryamabadi A, Savari A, Ghanemi K (2015) Heavy metals’ concentration in sediment, shrimp and two fish species from the northwest Persian Gulf. Toxicol Ind Health 31:554–565

    Article  CAS  Google Scholar 

  • Morgan B, Rate AW, Burton ED (2012) Trace element reactivity in FeS-rich estuarine sediments: influence of formation environment and acid sulfate soil drainage. Sci Total Environ 438:463–476

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–156

    CAS  Google Scholar 

  • Morse JW, Rickard D (2004) Peer reviewed: chemical dynamics of sedimentary acid volatile sulfide. Environ Sci Technol 38:131A–136A

    Article  CAS  Google Scholar 

  • Mucha AP, Vasconcelos MTSD, Bordalo AA (2005) Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary (Portugal). Mar Environ Res 60:531–550

    Article  CAS  Google Scholar 

  • Myhr S, Lillebø B-L, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408

    Article  CAS  Google Scholar 

  • Nizoli EC, Luiz-Silva W (2012) Seasonal AVS–SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, Southeastern Brazil. Environ Geochem Health 34:263–272

    Article  CAS  Google Scholar 

  • Nobi E, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci 87:253–264

    Article  CAS  Google Scholar 

  • Oehm N, Luben T, Ostrofsky M (1997) Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA. Hydrobiologia 345:79–85

    Article  CAS  Google Scholar 

  • Poot A, Gillissen F, Koelmans A (2007) Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system. Environ Pollut 148:779–787

    Article  CAS  Google Scholar 

  • Prica M, Dalmacija B, Rončević S, Krčmar D, Bečelić M (2008) A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Sci Total Environ 389:235–244

    Article  CAS  Google Scholar 

  • Qiao S, Shi X, Zhu A, Liu Y, Bi N, Fang X, Yang G (2010) Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea. Estuar Coast Shelf Sci 86:337–344

    Article  Google Scholar 

  • Raj SM, Jayaprakash M (2008) Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India. Environ Geol 56:207–217

    Article  CAS  Google Scholar 

  • Simpson SL, Apte SC, Batley GE (1998) Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environ Sci Technol 32:620–625

    Article  CAS  Google Scholar 

  • SOAPsRoC. S (2002) Marine sediment quality (GB 18668–2002) (in Chinese)

  • Soares H, Boaventura R, Machado A, Da Silva JE (1999) Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105:311–323

    Article  CAS  Google Scholar 

  • Spencer K, Dewhurst R, Penna P (2006) Potential impacts of water injection dredging on water quality and ecotoxicity in Limehouse Basin, River Thames, SE England, UK. Chemosphere 63:509–521

    Article  CAS  Google Scholar 

  • Sun WW, Wang DQ, Chen ZL, Bi CJ, Hu BB, Liu YL, Li JF, Xu SY (2009) Contents and spatial distributions of AVS and SEM in Wusong-Liuhe coastal sediments in Yangtze Estuary. Geochimica 38:140–146

    CAS  Google Scholar 

  • USEPA (2001) Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses: technical manual 2001 office of science & technology, office of water: Washington, DC EPA-823-B-01002

  • USEPA (2004a) The incidence and severity of sediment contamination in surface waters of the United States (National Sediment Quality Survey EPA-823-R-04-007, 2nd edn. United States Environmental Protection Agency, Office of Science and Technology, Washington, DC

    Google Scholar 

  • USEPA (2004b) The incidence and severity of sediment contamination in surface waters of the United States, National Sediment Quality Survey EPA 823-R-04-007, 2nd edn. US Environmental Protection Agency, Office of Water, Washington, DC

    Google Scholar 

  • USEPA (2005a) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc) EPA-600-R-02-011. US Environmental Protection Agency, Office of Research and Development, Washington, DC

    Google Scholar 

  • USEPA (2005b) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc) (EPA-600-R-02-011. United States Environmental Protection Agency, Office of Research and Development, Washington, DC

    Google Scholar 

  • Van Den Berg GA, Loch JG, Van Der Heijdt LM, Zwolsman JJ (1999) Mobilisation of heavy metals in contaminated sediments in the river Meuse, The Netherlands. Water Air Soil Pollut 116:567–586

    Article  Google Scholar 

  • Van Griethuysen C, Gillissen F, Koelmans A (2002) Measuring acid volatile sulphide in floodplain lake sediments: effect of reaction time, sample size and aeration. Chemosphere 47:395–400

    Article  Google Scholar 

  • Van Griethuysen C, De Lange H, Van den Heuij M, De Bies S, Gillissen F, Koelmans A (2006) Temporal dynamics of AVS and SEM in sediment of shallow freshwater floodplain lakes. Appl Geochem 21:632–642

    Article  CAS  Google Scholar 

  • Wang F, Chapman PM (1999) Biological implications of sulfide in sediment—a review focusing on sediment toxicity. Environ Toxicol Chem 18:2526–2532

    CAS  Google Scholar 

  • Wang C-y, Wang X-l (2007) Spatial distribution of dissolved Pb, Hg, Cd, Cu and as in the Bohai Sea. J Environ Sci 19:1061–1066

    Article  CAS  Google Scholar 

  • Wang W, Li X, Wang J, Xu H, Wu J (2004) Influence of biofilms growth on corrosion potential of metals immersed in seawater. Mater Corros 55:30–35

    Article  CAS  Google Scholar 

  • Wijsman JW, Middelburg JJ, Herman PM, Böttcher ME, Heip CH (2001) Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Mar Chemistry 74:261–278

    Article  CAS  Google Scholar 

  • Wu Q, Ma Q, Wang J, Jiang Z, Wang X (2007) The AVS in surface sediment of near sea area of Huanghe Estuary. Mar Environ Sci 26:126–129

    CAS  Google Scholar 

  • Yang YQ, Chen FR, Zhang L, Liu JS, Wu SJ, Kang ML (2012) Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Mar Pollut Bull 64:1947–1955

    Article  CAS  Google Scholar 

  • Yokoyama H, Inoue M, Abo K (2004) Estimation of the assimilative capacity of fish-farm environments based on the current velocity measured by plaster balls. Aquaculture 240:233–247

    Article  Google Scholar 

  • Younis AM, El-Zokm GM, Okbah MA (2014) Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments. Environ Monit Assess 186:3567–3579

    Article  CAS  Google Scholar 

  • Yu K-C, Tsai L-J, Chen S-H, Ho S-T (2001) Chemical binding of heavy metals in anoxic river sediments. Water Res 35:4086–4094

    Article  CAS  Google Scholar 

  • Zhuang W, Gao X (2013) Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea: concentrations, spatial distributions and the indication of heavy metal pollution status. Mar Pollut Bull 76:128–138

    Article  CAS  Google Scholar 

  • Zimmerman AR, Canuel EA (2000) A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Mar Chem 69:117–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the sediment quality assessment (SQA) to study the “acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs), dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polybrominated diphenyl ethers (PBDEs), and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations and their regional characteristics, possible sources, and potential toxicity in coastal sediments from urban, semi-industrial, and industrial areas of Asaluyeh Harbor, Iran”. The authors are grateful to the Bushehr University of Medical Sciences for financially and technically supporting this research (Grant No. 1500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Dobaradaran.

Additional information

Responsible editor: Céline Guéguen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaeinia, H., Nabipour, I., Ostovar, A. et al. Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity. Environ Sci Pollut Res 23, 9871–9890 (2016). https://doi.org/10.1007/s11356-016-6189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6189-0

Keywords

Navigation