Skip to main content

Advertisement

Log in

Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Methanotrophs not only play an important role in mitigating CH4 emissions from the environment, but also provide a large quantity of CH4-derived carbon to their habitats. In this study, the distribution of CH4-derived carbon and microbial community was investigated in a consortium enriched at three O2 tensions, i.e., the initial O2 concentrations of 2.5 % (LO-2), 5 % (LO-1), and 21 % (v/v) (HO). The results showed that compared with the O2-limiting environments (2.5 and 5 %), more CH4-derived carbon was converted into CO2 and biomass under the O2 sufficient condition (21 %). Besides biomass and CO2, a high conversion efficiency of CH4-derived carbon to dissolved organic carbon was detected in the cultures, especially in LO-2. Quantitative PCR and Miseq sequencing both showed that the abundance of methanotroph increased with the increasing O2 concentrations. Type II methanotroph Methylocystis dominated in the enrichment cultures, accounting for 54.8, 48.1, and 36.9 % of the total bacterial 16S rRNA gene sequencing reads in HO, LO-1, and LO-2, respectively. Methylotrophs, mainly including Methylophilus, Methylovorus, Hyphomicrobium, and Methylobacillus, were also abundant in the cultures. Compared with the O2 sufficient condition (21 %), higher microbial biodiversity (i.e., higher Simpson and lower Shannon indexes) was detected in LO-2 enriched at the initial O2 concentration of 2.5 %. These findings indicated that compared with the O2 sufficient condition, more CH4-derived carbon was exuded into the environments and promoted the growth of non-methanotrophic microbes in O2-limiting environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220

    Article  CAS  Google Scholar 

  • Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, von Bergen M, Seifert J (2013) Microbial minorities modulate methane consumption through niche partitioning. ISME J 7:2214–2228

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Cébron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environ Microbiol 73:798–807

    Article  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  Google Scholar 

  • Corder RE, Johnson ER, Vega JL, Clausen EC, Gaddy JL (1986) Biological production of methanol from methane. URL http://www.anl.gov/PCS/acsfuel/preprint%20archive/Files/33_3_LOS%20ANGELES_09-88_0469.pdf

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp nov., a new methane-oxidizing acidophilic bacterium from peat bags, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  CAS  Google Scholar 

  • Deutzmann JS, Hoppert M, Schink B (2014) Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol 37:165–169

    Article  CAS  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou SB, Ly B, Saw JH, Zhou ZM, Ren Y (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Graham DW, Korich DG, Leblanc RP, Sinclair NA, Arnold RG (1992) Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 53:2231–2236

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • He R, Wooller MJ, Pohlman JW, Catranis C, Quensen J, Tiedje JM, Leigh MB (2012a) Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ Microbiol 14:1403–1419

    Article  CAS  Google Scholar 

  • He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB (2012b) Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes. Appl Environ Microbiol 78:4715–4723

    Article  CAS  Google Scholar 

  • He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB (2012c) Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J 6:1937–1948

    Article  CAS  Google Scholar 

  • He R, Wooller MJ, Pohlman JW, Tiedje JM, Leigh MB (2015) Methane-derived carbon flow through microbial communities in arctic lake sediments. Environ Microbiol 17:3233–3250

    Article  CAS  Google Scholar 

  • Hernandez ME, Beck DAC, Lidstrom ME, Chistoserdova L (2015) Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. Peer J 3, e801. doi:10.7717/peerj.801

    Article  Google Scholar 

  • Ho A, Kerckhof FM, Luke C (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5:335–345

    Article  CAS  Google Scholar 

  • Ho A, De Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8:1945–1948

    Article  Google Scholar 

  • Ho A, Reim A, Kim SY, Meima-Franke M, Termorshuizen A, de Boer W, van der Putten WH, Bodelier PLE (2015) Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application. Glob Chang Biol 21:3864–3879

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105:300–304

    Article  CAS  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GAN, Raftery D, Fu Y, Bringel F (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:1–7

    Article  Google Scholar 

  • Kang FX, Zhu DQ (2013) Abiotic reduction of 1, 3-dinitrobenzene by aqueous dissolved extracellular polymeric substances produced by microorganisms. J Environ Qual 42:1441–1448

    Article  CAS  Google Scholar 

  • Knief C, Kolb S, Bodelier PLE, Lipski A, Dunfield PF (2006) The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ Microbiol 8:321–333

    Article  CAS  Google Scholar 

  • Kong JY, Su Y, Zhang QQ, Bai Y, Xia FF, Fang CR, He R (2013) Vertical profiles of community and activity of methanotrophs in landfill cover soils of different age. J Appl Microbiol 115:756–765

    Article  CAS  Google Scholar 

  • Lee SG, Goo JH, Kim HG, Oh JI, Kim YM, Kim SW (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol Lett 26:947–950

    Article  CAS  Google Scholar 

  • Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MSM (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14:1024–1034

    Article  CAS  Google Scholar 

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  Google Scholar 

  • Malashenko YR, Pirog TP, Romanovskaya VA, Sokolov IG, Grinberg TA (2001) Search for methanotrophic producers of exopolysaccharides. Appl Biochem Microbiol 37:599–602

    Article  CAS  Google Scholar 

  • Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the canadian high arctic. Appl Environ Microbiol 76:5773–5784

    Article  CAS  Google Scholar 

  • Murase J, Frenzel P (2008) Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol Ecol 65:3408–3414

    Google Scholar 

  • Neufeld JD, Schafer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007) Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1:480–491

    Article  CAS  Google Scholar 

  • Oshkin IY, Beck DAC, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L (2015) Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J 9:1119–1129

    Article  CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Den Camp HJMO (2007) Methanotrophy below pH1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  CAS  Google Scholar 

  • Qiu QF, Noll M, Abraham WR, Lu YH, Conrad R (2008) Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J 2:602–614

    Article  CAS  Google Scholar 

  • Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC (2002) Identification of active methylotroph populations in an acidic forest soil by stable isotope probing. Microbiology 148:2331–2342

    Article  CAS  Google Scholar 

  • Rittman BE, McCarty PL (2000) Environmental biotechnology: principles and applications. McGraw-Hill College, Boston

    Google Scholar 

  • Roslev P, Iversen N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl Environ Microbiol 65:4064–4070

    CAS  Google Scholar 

  • Roslev P, King GM (1995) Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Appl Environ Microbiol 61:1563–1570

    CAS  Google Scholar 

  • Roslev P, Iversen N, Henriksen K (1997) Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl Environ Microbiol 63:874–880

    CAS  Google Scholar 

  • Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber HM, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res 27:409–455

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  Google Scholar 

  • Stock M, Hoefman S, Kerckhof FM, Boon N, De Vos P, De Baets B, Heylen K, Waegeman W (2013) Exploration and prediction of interactions between methanotrophs and heterotrophs. Res Microbiol 164:1045–1054

    Article  Google Scholar 

  • Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine AL (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton sea. Appl Environ Microbiol 76:757–768

    Article  CAS  Google Scholar 

  • Visco G, Campanella L, Nobili V (2004) Organic carbons and TOC in waters: an overview of the international norm for its measurements. Microchem J 79:185–191

    Article  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463

    Article  CAS  Google Scholar 

  • Wagner D, Kobabe S, Pfeiffer EM, Hubberten HW (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafr Periglac 14:173–185

    Article  Google Scholar 

  • Wang J, Xia FF, Bai Y, Fang CR, Shen DS, He R (2011) Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manag 31:864–870

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China with Grants No. 41001148, No. 51178411, and No. 41371012, Zhejiang Province Natural Science Foundation for Distinguished Young Scholars (LR13E080002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo He.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, XM., He, R., Chen, M. et al. Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability. Environ Sci Pollut Res 23, 7517–7528 (2016). https://doi.org/10.1007/s11356-015-6017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-6017-y

Keywords

Navigation