Skip to main content

Advertisement

Log in

Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003–2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003–2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110–176 %) over the forest region compared to the cropland (34–62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science. doi:10.1126/science.276.5315.1052

    Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles. doi:10.1029/2000GB001382

    Google Scholar 

  • Arino O, Casadio S, Serpe D (2011) Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sens Environ. doi:10.1016/j.rse.2011.05.025

    Google Scholar 

  • Blake NJ, Blake DR, Wingenter SOW et al (1999) Influence of southern hemispheric biomass burning on midtropospheric distributions of nonmethane hydrocarbons and selected halocarbons over the remote South Pacific. J Geophys Res. doi:10.1029/1999JD900067

    Google Scholar 

  • Bucsela EJ, Krotkov NA, Celarier EA et al (2013) A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI. Atmos Meas Techn. doi:10.5194/amt-6-2607-2013

    Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science. doi:10.1126/science.250.4988.1669

    Google Scholar 

  • Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ. doi:10.1016/0034-4257(81)90021-3

    Google Scholar 

  • Duncan BN, Martin RV, Staudt AC, Yevich R, Logan JA (2003) Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J Geophys Res. doi:10.1029/2002JD002378

    Google Scholar 

  • Fishman J, Hoell JM Jr, Bendura RD, McNeal RJ, Kirchhoff VWJH (1996) NASA GTE TRACE A experiment (September–October 1992): overview. J Geophys Res. doi:10.1029/96JD00123

    Google Scholar 

  • Galanter M, Levy H II, Carmichael GR (2000) Impacts of biomass burning on tropospheric CO, NOx, and O3. J Geophys Res. doi:10.1029/1999JD901113

    Google Scholar 

  • Ghude SD, Fadnavis S, Beig G, Polade SD, van der A RJ (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophys Res. doi:10.1029/2007JD009615

    Google Scholar 

  • Ghude SD, Kulkarni SH, Jena C, Pfister GG, Beig G, Fadnavis S, van der A RJ (2013) Application of satellite observations for identifying regions of dominant sources of nitrogen oxides over the Indian Subcontinent. J Geophys Res Atmos. doi:10.1029/2012JD017811

    Google Scholar 

  • Giglio L (2010) MODIS Collection 5 Active Fire Product User’s Guide Version-2.4 http://www.fao.org/fileadmin/templates/gfims/docs/MODIS_Fire_Users_Guide_2.4.pdf

  • Giglio L, Descloitres J, Justice CO, Kaufman Y (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ. doi:10.1016/S0034-4257(03)00184-6

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT et al (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Jena C, Ghude SD, Pfister GG et al (2014) Influence of springtime biomass burning in South Asia on regional ozone (O3): a model based case study. doi:10.1016/j.atmosenv.2014.10.027

  • Johnston FH, Henderson SB, Chen Y et al (2012) Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect. doi:10.1289/ehp.1104422

    Google Scholar 

  • Justice CO, Giglio L, Korontzi S et al (2002) The MODIS fire products. Remote Sens Environ. doi:10.1016/S0034-4257(02)00076-7

    Google Scholar 

  • Kaiser JW, Heil A, Andreae MO et al (2012) Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences. doi:10.5194/bg-9-527-2012

    Google Scholar 

  • Kaufman YJ, Justice CO, Flynn LP et al (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res. doi:10.1029/98JD01644

    Google Scholar 

  • Kharol SK, Badarinath KVS (2006) Impact of biomass burning on aerosol properties over tropical urban region of Hyderabad, India. Geophys Res Lett. doi:10.1029/2006GL026759

    Google Scholar 

  • Kondo Y, Ko M, Koike M, Kawakami S, Ogawa T (2002) Preface to special section on biomass burning and lightning experiment (bible). J Geophys Res. doi:10.1029/2002JD002401

    Google Scholar 

  • Koppmann R, von Czapiewski K, Reid JS (2005) A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos Chem Phys Discuss. doi:10.5194/acpd-5-10455-2005

    Google Scholar 

  • Kumar R, Naja M, Satheesh SK et al (2011) Influences of the springtime northern Indian biomass burning over the central Himalayas. J Geophys Res. doi:10.1029/2010JD015509

    Google Scholar 

  • Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second‐generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res 112, D13211. doi:10.1029/2006JD007811

  • Lindesay JA, Andreae MO, Goldammer JG et al (1996) International geosphere-biosphere programme/international global atmospheric chemistry SAFARI-92 field experiment: background and overview. J Geophys Res. doi:10.1029/96JD01512

    Google Scholar 

  • Matson M, Dozier J (1981) Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm Eng Remote Sens 47(9):1311–1318

    Google Scholar 

  • Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning. Clim Chang 2(3):207–247

    Article  CAS  Google Scholar 

  • Sharma AR, Kharol SK, Badarinath KVS, Singh D (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India. Ann Geophys. doi:10.5194/angeo-28-367-2010

    Google Scholar 

  • Streets DG, Yarber KF, Woo JH, Carmichael GR (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Glob Biogeochem Cycles. doi:10.1029/2003GB002040

    Google Scholar 

  • Takegawa N, Kondo Y, Ko M et al (2003) Photochemical production of O3 in biomass burning plumes in the boundary layer over northern Australia. Geophys Res Lett. doi:10.1029/2003GL017017

    Google Scholar 

  • Thompson AM, Thompson AM, Witte JC (2001) Tropical tropospheric ozone and biomass burning. Science. doi:10.1126/science.291.5511.2128

    Google Scholar 

  • Torres O, Bhartia PK, Herman JR, Ahmad Z (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J Geophys Res. doi:10.1029/98JD00900

    Google Scholar 

  • Torres O, Decae R, Veefkind JP, de Leeuw G (2002b) OMI aerosol retrieval algorithm, in OMI Algorithm Theoretical Basis Document: Clouds, Aerosols, and Surface UV Irradiance. vol-3 version-2 http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/OMI/ATBD-OMI-03.pdf, pp 47 – 71

  • Van der Werf GR, Randerson JT, Giglio L et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires. Atmos Chem Phys. doi:10.5194/acp-10-11707-2010

    Google Scholar 

  • Venkataraman C, Habib G, Kadamba D et al (2006) Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob Biogeochem Cycles. doi:10.1029/2005GB002547

    Google Scholar 

  • Wiedinmyer C, Akagi SK, Yokelson RJ et al (2011) The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev. doi:10.5194/gmd-4-625-2011

    Google Scholar 

Download references

Acknowledgments

We acknowledge the mission scientists and principal investigators who provided the data used in this study. MCD14ML products used in this study are distributed from an ftp server at University of Maryland (http//:fuoco.geog.umd.edu). Emission inventory data are obtained from ECCAD database ( http://ether.ipsl.jussieu.fr/eccad ). The OMI tropospheric NO2 and MODIS AOD data products used in this study were acquired using the GES‐DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). AATSR fire Data is taken from http://due.esrin.esa.int/wfa/ and TRMM 3b42 data product from MIRADOR. Agricultural data are taken from http://data.fao.org . Authors are thankful to ARIES and ISRO-ATCM project for supporting this work. Authors are also thankful to Christine Wiedinmyer from NCAR for her fruitful discussions in writing the manuscript. The National Center for Atmospheric Research is supported by the National Science Foundation. We are also thankful to the editor and reviewer for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naja.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, P., Naja, M., Kumar, R. et al. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environ Sci Pollut Res 23, 4397–4410 (2016). https://doi.org/10.1007/s11356-015-5629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5629-6

Keywords

Navigation