Skip to main content
Log in

Quinolone co-resistance in ESBL- or AmpC-producing Escherichia coli from an Indian urban aquatic environment and their public health implications

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Quinolone and β-lactam antibiotics constitute major mainstay of treatment against infections caused by pathogenic Escherichia coli. Presence of E. coli strains expressing co-resistance to both these antibiotic classes in urban aquatic environments which are consistently being used for various anthropogenic activities represents a serious public health concern. From a heterogeneous collection of 61 E. coli strains isolated from the river Yamuna traversing through the National Capital Territory of Delhi (India), those harboring bla CTX-M-15 (n = 10) or bla CMY-42 (n = 2) were investigated for co-resistance to quinolones and the molecular mechanisms thereof. Resistance was primarily attributed to amino acid substitutions in the quinolone resistance-determining regions (QRDRs) of GyrA (S83L ± D87N) and ParC (S80I ± E84K). One of the E. coli strains, viz., IPE, also carried substitutions in GyrB and ParE at positions Ser492→Asn and Ser458→Ala, respectively. The phenotypically susceptible strains nevertheless carried plasmid-mediated quinolone resistance (PMQR) gene, viz., qnrS, which showed co-transfer to the recipient quinolone-sensitive E. coli J53 along with the genes encoding β-lactamases and led to increase in minimal inhibitory concentrations of quinolone antibiotics. To the best of our knowledge, this represents first report of molecular characterization of quinolone co-resistance in E. coli harboring genes for ESBLs or AmpC β-lactamases from a natural aquatic environment of India. The study warrants true appreciation of the potential of urban aquatic environments in the emergence and spread of multi-drug resistance and underscores the need to characterize resistance genetic elements vis-à-vis their public health implications, irrespective of apparent phenotypic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adnan N, Sultana M, Islam OK, Nandi SP, Hossain MA (2013) Characterization of ciprofloxacin resistant extended spectrum β-lactamase (ESBL) producing Escherichia spp. from clinical waste water in Bangladesh. Adv Biosci Biotechnol 4:15–23. doi:10.4236/abb.2013.47A2003

    Article  CAS  Google Scholar 

  • Bagel S, Hüllen V, Wiedemann B, Heisig P (1999) Impact of gyrA and parC mutations on quinolone resistance, doubling time, and supercoiling degree of Escherichia coli. Antimicrob Agents Chemother 43:868–875

    CAS  Google Scholar 

  • Bajaj P, Singh NS, Kanaujia PK, Virdi JS (2015) Distribution and molecular characterization of genes encoding CTX-M and AmpC β-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Sci Total Environ 505:350–356. doi:10.1016/j.scitotenv.2014.09.084

    Article  CAS  Google Scholar 

  • Bergenholtz RD, Jorgensen MS, Hansen LH, Jensen LB, Hasman H (2009) Characterization of genetic determinants of extended-spectrum cephalosporinases (ESCs) in Escherichia coli isolates from Danish and imported poultry meat. J Antimicrob Chemother 64:207–209. doi:10.1093/jac/dkp168

    Article  CAS  Google Scholar 

  • Carattoli A (2009) Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238. doi:10.1128/AAC.01707-08

    Article  CAS  Google Scholar 

  • Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228. doi:10.1016/j.mimet.2005.03.018

    Article  CAS  Google Scholar 

  • Chandran SP, Diwan V, Tamhankar AJ, Joseph BV, Rosales-Klintz S, Mundayoor S, Lundborg CS, Macaden R (2014) Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: a matter of concern. J Appl Microbiol 117:984–995. doi:10.1111/jam.12591

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (2012) Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. M100-S22. CLSI, Wayne, PA

  • Dhanji H, Murphy NM, Akhigbe C, Doumith M, Hope R, Livermore DM, Woodford N (2011) Isolation of fluoroquinolone-resistant O25b:H4-ST131 Escherichia coli with CTX-M-14 extended-spectrum β-lactamase from UK river water. J Antimicrob Chemother 66:512–516. doi:10.1093/jac/dkq472

    Article  CAS  Google Scholar 

  • Diwan V, Chandran SP, Tamhankar AJ, Stålsby Lundborg C, Macaden R (2012) Identification of extended-spectrum β-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India. J Antimicrob Chemother 67:857–859. doi:10.1093/jac/dkr564

    Article  CAS  Google Scholar 

  • Dolejska M, Frolkova P, Florek M, Jamborova I, Purgertova M, Kutilova I, Cizek A, Guenther S, Literak I (2011) CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J Antimicrob Chemother 66:2784–2790. doi:10.1093/jac/dkr363

    Article  CAS  Google Scholar 

  • Doumith M, Dhanji H, Ellington MJ, Hawkey P, Woodford N (2012) Characterization of plasmids encoding extended-spectrum β-lactamases and their addiction systems circulating among Escherichia coli clinical isolates in the UK. J Antimicrob Chemother 67:878–885. doi:10.1093/jac/dkr553

    Article  CAS  Google Scholar 

  • FAO/WHO/OIE (2007) Report of the joint FAO/WHO/OIE expert meeting on critically important antimicrobials. FAO, Rome

    Google Scholar 

  • Hopkins KL, Davies RH, Threlfall EJ (2005) Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 25:358–373. doi:10.1016/j.ijantimicag.2005.02.006

    Article  CAS  Google Scholar 

  • Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, Nolan LK (2007) Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 73:1976–1983. doi:10.1128/AEM.02171-06

    Article  CAS  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. doi:10.1038/nrmicro818

    Article  CAS  Google Scholar 

  • Karczmarczyk M, Martins M, Quinn T, Leonard N, Fanning S (2011) Mechanisms of fluoroquinolone resistance in Escherichia coli isolates from food-producing animals. Appl Environ Microbiol 77:7113–7120. doi:10.1128/AEM.00600-11

    Article  CAS  Google Scholar 

  • Lautenbach E, Strom BL, Bilker WB, Patel JB, Edelstein PH, Fishman NO (2001) Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis 33:1288–1294. doi:10.1086/322667

    Article  CAS  Google Scholar 

  • Moodley A, Guardabassi L (2009) Transmission of IncN plasmids carrying bla CTX-M-1 between commensal Escherichia coli in pigs and farm workers. Antimicrob Agents Chemother 53:1709–1711. doi:10.1128/AAC.01014-08

    Article  CAS  Google Scholar 

  • Nakamura S, Nakamura M, Kojima T, Yoshida H (1989) gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrob Agents Chemother 33:254–255

    Article  CAS  Google Scholar 

  • Nicolas-Chanoine MH, Bertrand X, Madec JY (2014) Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27:543–574. doi:10.1128/CMR.00125-13

    Article  CAS  Google Scholar 

  • Paltansing S, Kraakman ME, Ras JM, Wessels E, Bernards AT (2013) Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. J Antimicrob Chemother 68:40–45. doi:10.1093/jac/dks365

    Article  CAS  Google Scholar 

  • Phan MD, Forde BM, Peters KM, Sarkar S, Hancock S, Stanton-Cook M, Ben Zakour NL, Upton M, Beatson SA, Schembri MA (2015) Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone. PLoS One 10(4):e0122369. doi:10.1371/journal.pone.0122369

    Article  CAS  Google Scholar 

  • Poirel L, Pitout JD, Calvo L, Rodriguez-Martinez JM, Church D, Nordmann P (2006) In vivo selection of fluoroquinolone-resistant Escherichia coli isolates expressing plasmid-mediated quinolone resistance and expanded-spectrum β-lactamase. Antimicrob Agents Chemother 50:125–127. doi:10.1128/AAC.50.4.1525-1527.2006

    Google Scholar 

  • Rodríguez-Baño J, Navarro MD, Romero L, Martínez-Martínez L, Muniain MA, Perea EJ, Pérez-Cano R, Pascual A (2004) Epidemiology and clinical features of infections caused by extended-spectrum β-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol 42:1089–1094. doi:10.1128/JCM.42.3.1089-1094.2004

    Article  Google Scholar 

  • Rodríguez-Martínez JM, Velasco C, García I, Cano ME, Martínez-Martínez L, Pascual A (2007) Mutant prevention concentrations of fluoroquinolones for Enterobacteriaceae expressing the plasmid-carried quinolone resistance determinant qnrA1. Antimicrob Agents Chemother 51:2236–2239. doi:10.1128/AAC.01444-06

    Article  CAS  Google Scholar 

  • Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez L, Pascual A (2011) Plasmid-mediated quinolone resistance: an update. J Infect Chemother 17:149–182. doi:10.1007/s10156-010-0120-2

    Article  CAS  Google Scholar 

  • Ruiz J (2003) Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother 51:1109–1117. doi:10.1093/jac/dkg222

    Article  CAS  Google Scholar 

  • Russo TA, Johnson JR (2003) Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5:449–456. doi:10.1016/S1286-4579(03)00049-2

    Article  Google Scholar 

  • Sáenz Y, Zarazaga M, Briñas L, Ruiz-Larrea F, Torres C (2003) Mutations in gyrA and parC genes in nalidixic acid-resistant Escherichia coli strains from food products, humans and animals. J Antimicrob Chemother 51:1001–1005. doi:10.1093/jac/dkg168

    Article  CAS  Google Scholar 

  • Shaheen BW, Nayak R, Foley SL, Boothe DM (2013) Chromosomal and plasmid-mediated fluoroquinolone resistance mechanisms among broad-spectrum-cephalosporin-resistant Escherichia coli isolates recovered from companion animals in the USA. J Antimicrob Chemother 68:1019–1024. doi:10.1093/jac/dks514

    Article  CAS  Google Scholar 

  • Sorlozano A, Gutierrez J, Jimenez A, de Dios Luna J, Martínez JL (2007) Contribution of a new mutation in parE to quinolone resistance in extended-spectrum-β-lactamase-producing Escherichia coli isolates. J Clin Microbiol 45(8):2740–2742. doi:10.1128/JCM.01093-07

    Article  CAS  Google Scholar 

  • Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22:664–689. doi:10.1128/CMR.00016-09

    Article  CAS  Google Scholar 

  • Stürenburg E, Mack D (2003) Extended-spectrum β-lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. J Infect 47:273–295. doi:10.1016/S0163-4453(03)00096-3

    Article  Google Scholar 

  • Tacão M, Moura A, Correia A, Henriques I (2014) Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water Res 48:100–107. doi:10.1016/j.watres.2013.09.021

    Article  CAS  Google Scholar 

  • Zurfluh K, Abgottspon H, Hächler H, Nüesch-Inderbinen M, Stephan R (2014) Quinolone resistance mechanisms among extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolated from rivers and lakes in Switzerland. PLoS One 9:e95864. doi:10.1371/journal.pone.0095864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by research funds from University of Delhi R&D research grant to strengthen doctoral research program (RC/2014/78). Priyanka Bajaj sincerely thanks Senior Research Fellowship from Council of Scientific and Industrial Research (CSIR, New Delhi, India).

The authors are grateful to Dr. George A. Jacoby for providing the azide-resistant E. coli strain J53.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jugsharan Singh Virdi.

Ethics declarations

Conflict of interest

None

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, P., Kanaujia, P.K., Singh, N.S. et al. Quinolone co-resistance in ESBL- or AmpC-producing Escherichia coli from an Indian urban aquatic environment and their public health implications. Environ Sci Pollut Res 23, 1954–1959 (2016). https://doi.org/10.1007/s11356-015-5609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5609-x

Keywords

Navigation