Skip to main content
Log in

Multistress effects on goldfish (Carassius auratus) behavior and metabolism

  • ECOTOX, the INRA's network of ecotoxicologists
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L−1 and MIX2 = 42 μg L−1). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton’s condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold H, Pluta H-J, Braunbeck T (1995) Simultaneous exposure of fish to endosulfan and disulfoton in vivo: ultrastructural, stereological and biochemical reactions in hepatocytes of male rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. doi:10.1016/0166-445X(95)00006-P

    Google Scholar 

  • Bacchetta C, Rossi A, Ale A, Campana M, Parma MJ, Cazenave J (2014) Combined toxicological effects of pesticides: a fish multi-biomarker approach. Ecol Indic. doi:10.1016/j.ecolind.2013.09.016

    Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. doi:10.1093/icb/42.3.517

    Google Scholar 

  • Battaglin WA, Furlong ET, Burkhardt MR, Peter CJ (2000) Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci Total Environ. doi:10.1016/S0048-9697(99)00536-7

    Google Scholar 

  • Becker AG, Moraes BS, Menezes CC, Loro VL, Santos DR, Reichert JM, Baldisserotto B (2009) Pesticide contamination of water alters the metabolism of juvenile silver catfish. Rhamdia quelen Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2009.01.006

    Google Scholar 

  • Biagianti-Risbourg S, Bastide J (1995) Hepatic perturbations induced by a herbicide (atrazine) in juvenile grey mullet Liza ramada (Mugilidae, Teleostei): an ultrastructural study. Aquat Toxicol. doi:10.1016/0166-445x(94)00065-x

    Google Scholar 

  • Bisson M (2002) Cytotoxic and endocrine-disrupting potential of atrazine, diazinon, endosulfan, and mancozeb in adrenocortical steroidogenic cells of rainbow trout exposed in vitro. Toxicol App Pharmacol. doi:10.1006/taap.2002.9377

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. doi:10.1016/0003-2697(76)90527-3

    Google Scholar 

  • Bret JR (1946) Rate of heat-tolerance in goldfish (Carassius auratus). In (ed) Biological series n°53. Ontario Fisheries Research Laboratory. pp 9-28

  • Bretaud S, Toutant JP, Saglio P (2000) Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol Environ Saf. doi:10.1006/eesa.2000.1954

    Google Scholar 

  • Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Am Zool

  • Canal J, Laffaille P, Gilbert F, Lauzeral C, Buisson L (2015) Influence of temperature on sediment reworking surface sediment disturbance by freshwater fish: a microcosm experiment. Intern J Lim. doi:10.1051/limn/2015012

    Google Scholar 

  • Castelli MG, Rusten M, Goksøyr A, Routti H (2014) mRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas. Aquat Toxicol. doi:10.1016/j.aquatox.2013.11.015

    Google Scholar 

  • Cavas T, Konen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagen. doi:10.1093/mutage/gem012

    Google Scholar 

  • Cech J Jr, Massingill M, Vondracek B, Linden A (1985) Respiratory metabolism of mosquitofish, Gambusia affinis: effects of temperature, dissolved oxygen, and sex difference. Environ Biol Fish. doi:10.1007/bf00002914

    Google Scholar 

  • Celander MC (2011) Cocktail effects on biomarker responses in fish. Aqua Toxicol. doi:10.1016/j.aquatox.2011.06.002

    Google Scholar 

  • CGDD (2011) Assessment of the presence of micro-pollutants in freshwater environments, period 2007-2009 (in French). Études & documents: Volume 54. Commissariat Général au Développement Durable (France)

  • Chellappa S, Huntingford FA, Strang RHC, Thomson RY (1995) Condition factor and hepatosomatic index as estimates of energy status in male three-spined stickleback. J Fish Biol. doi:10.1111/j.1095-8649.1995.tb06002.x

    Google Scholar 

  • Cook M, Moore P (2008) The effects of the herbicide metolachlor on agonistic behavior in the crayfish. Orconectes rusticus Arch Environ Contam Toxicol. doi:10.1007/s00244-007-9088-z

    Google Scholar 

  • De Nadaï-Monoury E, Lecerf A, Canal J, Buisson L, Laffaille P, Gilbert F (2013) A cost-effective method to quantify surface sediment reworking in streams. Hydrobiol. doi:10.1007/s10750-013-1497-6

    Google Scholar 

  • De Vries P (2012) Salmonid influence on rivers: a geomorphic fish tail. Geologija. doi:10.1016/j.geomorph.2011.04.040

    Google Scholar 

  • Debenest T (2007) Characterization of the impact of agricultural pollution on benthic diatoms (in French). Ph.D Thesis, Universté de Bordeaux 1. Bordeaux, France

  • Devault DA, Gérino M, Laplanche C, Julien F, Winterton P, Merlina G, Delmas F, Lim P, Sanchez-Pérez JM, Pinelli E (2009) Herbicide accumulation and evolution in reservoir sediments. Sci Total Environ. doi:10.1016/j.scitotenv.2008.12.064

    Google Scholar 

  • Dossena M, Yvon-Durocher G, Grey J, Montoya JM, Perkins DM, Trimmer M, Woodward G (2012) Warming alters community size structure and ecosystem functioning. Proc R Soc B Biol Sci. doi:10.1098/rspb.2012.0394

    Google Scholar 

  • Drinkwater KF, Beaugrand G, Kaeriyama M, Kim S, Ottersen G, Perry RI, Pörtner H-O, Polovina JJ, Takasuka A (2010) On the processes linking climate to ecosystem changes. J Mar Syst. doi:10.1016/j.jmarsys.2008.12.014

    Google Scholar 

  • EFSA (2010) Scientific report of the endocrine active substances task force. Eur Food Safety Authority (EFSA) J. doi:10.2903/j.efsa.2010.1932

    Google Scholar 

  • Fatima M, Mandiki S, Douxfils J, Silvestre F, Coppe P, Kestemont P (2007) Combined effects of herbicides on biomarkers reflecting immune–endocrine interactions in goldfish Immune and antioxidant effects. Aqua Toxicol. doi:10.1016/j.aquatox.2006.11.013

    Google Scholar 

  • Feng M, Qu R, Wang C, Wang L, Wang Z (2013) Comparative antioxidant status in freshwater fish Carassius auratus exposed to six current-use brominated flame retardants: a combined experimental and theoretical study. Aqua Toxicol. doi:10.1016/j.aquatox.2013.07.001

    Google Scholar 

  • Garnouma M, Teil MJ, Blanchard M, Chevreuil M (1998) Spatial and temporal variations of herbicide (triazines and phenylureas) concentrations in the catchment basin of the Marne river (France). Sci Total Environ. doi:10.1016/S0048-9697(98)00326-X

    Google Scholar 

  • Gordon CJ (2005) Temperature and toxicology: an integrative, comparative, and environmental approach. CRC Press

  • Grassie C, Braithwaite VA, Nilsson J, Nilsen TO, Teien H-C, Handeland SO, Stefansson SO, Tronci V, Gorissen M, Flik G, Ebbesson LOE (2013) Aluminum exposure impacts brain plasticity and behavior in Atlantic salmon (Salmo salar). J Exp Biol. doi:10.1242/jeb.083550

    Google Scholar 

  • Graymore M, Stagnitti F, Allinson G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int. doi:10.1016/S0160-4120(01)00031-9

    Google Scholar 

  • Guardiola FA, Gónzalez-Párraga P, Meseguer J, Cuesta A, Esteban MA (2014) Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immuno. doi:10.1016/j.fsi.2013.10.020

    Google Scholar 

  • Handy RD, Sims DW, Giles A, Campbell HA, Musonda MM (1999) Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper. Aquat Toxicol. doi:10.1016/s0166-445x(99)00004-1

    Google Scholar 

  • Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, Lee M, Mai VP, Marjuoa Y, Parker J, Tsui M (2006) Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ Health Perspect. doi:10.1289/ehp.8051

    Google Scholar 

  • Holmstrup M, Bindesbøl A-M, Oostingh GJ, Duschl A, Scheil V, Köhler H-R, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ. doi:10.1016/j.scitotenv.2009.10.067

    Google Scholar 

  • Ieno EN, Solan M, Batty P, Pierce GJ (2006) How biodiversity affects ecosystem functioning: roles of infaunal species richness, identity and density in the marine benthos. Mar Ecol Prog Ser. doi:10.3354/meps311263

    Google Scholar 

  • IFEN (2007) Pesticides in water in 2005 (in French). Les dossiers IFEN n°09. Institut Français de l’Environnement

  • Iwama GK (1998) Stress in fish. Ann N Y Acad Sci. doi:10.1111/j.1749-6632.1998.tb09005.x

    Google Scholar 

  • Iwama GK, Thomas P, Forsyth RB, Vijayan MM (1998) Heat shock protein expression in fish. Rev Fish Biol Fish. doi:10.1023/a:1008812500650

    Google Scholar 

  • Keith P, Persat H, Feunten E, Allardi J (2011) Freshwater fish species in France (in French). Biotope. Muséum national d’histoire naturelle, Paris

    Google Scholar 

  • Keith T, Farrell A, Brauner C (2014) Organic chemical toxicology of fishes. Fish Physiology Volume 33. Keith T, Farrell A, Brauner C. Academic Press

  • Kennedy CJ, Ross PS (2012) Stress syndromes: heightened bioenergetic costs associated with contaminant exposure at warm temperatures in teleosts. Integr Environ Assess Manag. doi:10.1002/ieam.1261

    Google Scholar 

  • Killen SS, Marras S, Ryan MR, Domenici P, McKenzie DJ (2012) A relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European sea bass. Funct Ecol. doi:10.1111/j.1365-2435.2011.01920.x

    Google Scholar 

  • Kreuger J (1998) Pesticides in stream water within agricultural catchment in southern Sweden. Sci Total Environ. doi:10.1016/S0048-9697(98)00155-7

    Google Scholar 

  • Lemly AD (1996) Winter stress syndrome: an important consideration for hazard assessment of aquatic pollutants. Ecotoxicol Environ Saf. doi:10.1006/eesa.1996.0067

    Google Scholar 

  • Lindman HR (1974) Analysis of variance in complex experimental designs. (Ed) W.H. Freeman & Co. San Francisco

  • López-Olmeda JF, Sánchez-Vázquez FJ (2011) Thermal biology of zebrafish (Danio rerio). J Therm Biol. doi:10.1016/j.jtherbio.2010.12.005

    Google Scholar 

  • Manciocco A, Calamandrei G, Alleva E (2014) Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach. Chemosphere. doi:10.1016/j.chemosphere.2013.12.072

    Google Scholar 

  • Marchand J, Quiniou L, Riso R, Thebaut M-T, Laroche J (2004) Physiological cost of tolerance to toxicants in the European flounder Platichthys flesus, along the French Atlantic Coast. Aqua Toxicol. doi:10.1016/j.aquatox.2004.10.001

    Google Scholar 

  • Martínez-Álvarez R, Morales A, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisheries. doi:10.1007/s11160-005-7846-4

    Google Scholar 

  • Melvin SD, Wilson SP (2013) The utility of behavioral studies for aquatic toxicology testing: a meta-analysis. Chemosphere. doi:10.1016/j.chemosphere.2013.07.036

    Google Scholar 

  • Meng S, Chen J, Wu W, Hu G, Qu J, You Y (2011) Effect of atrazine on antioxidant enzyme and its bioaccumulation in kidney of crucian carp. Carassius auratus J Northeast Agric Univ. doi:10.1016/S1006-8104(13)60094-X

    Google Scholar 

  • Montgomery DR, Buffington JM, Peterson NP, Schuett-Hames D, Quinn TP (1996) Stream-bed scour, egg burial depth, and the influence of salmonid spawning on bed surface mobility and embryo survival. Can J Fish Aqua Sci 53:1061–1070

    Article  Google Scholar 

  • Moon TW, Foster GD (1995) Chapter 4 Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. In: Mommsen TP (ed) Hochachka, P. W. Elsevier, Biochemistry and molecular biology of fishes, pp 65–100

    Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int. doi:10.1016/j.envint.2009.02.006

    Google Scholar 

  • Peoples BK, McManamay RA, Orth DJ, Frimpong EA (2014) Nesting habitat use by river chubs in a hydrologically variable Appalachian tailwater. Ecol Freshw Fish. doi:10.1111/eff.12078

    Google Scholar 

  • Polard T (2011) Characterization of genotoxic effects on fish during floods (in French). Ph.D Thesis, Université Paul Sabatier-Toulouse III. Toulouse, France

  • Polard T, Jean S, Gauthier L, Laplanche C, Merlina G, Sánchez-Pérez JM, Pinelli E (2011) Mutagenic impact on fish of runoff events in agricultural areas in south-west France. Aqua Toxicol. doi:10.1016/j.aquatox.2010.09.014

    Google Scholar 

  • Pörtner HO (2002) Climate variations and the physiological basis of temperature dependant biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A: Mol Int Physiol. doi:10.1016/S1095-6433(02)00045-4

    Google Scholar 

  • Reise K (2002) Sediment mediated species interactions in coastal waters. J Sea Res. doi:10.1016/S1385-1101(02)00150-8

    Google Scholar 

  • Reynolds WW, Casterlin ME (1979) Effect of temperature on locomotor activity in the goldfish (Carassius auratus) and the bluegill (Lepomis macrochirus): Presence of an “activity well” in the region of the final preferendum. Hydrobiol. doi:10.1007/BF00032711

  • Roze T, Christen F, Amerand A, Claireaux G (2013) Trade-off between thermal sensitivity hypoxia tolerance and growth in fish. J Therm Biol. doi:10.1016/j.jtherbio.2012.12.001

    Google Scholar 

  • Saglio P, Trijasse S (1998) Behavioral responses to atrazine and diuron in goldfish. Arch Environ Contam Toxicol. doi:10.1007/s002449900406

    Google Scholar 

  • Schiedek D, Sundelin B, Readman JW, Macdonald RW (2007) Interactions between climate change and contaminants. Mar Pollut Bull. doi:10.1016/j.marpolbul.2007.09.020

    Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aqua Toxicol. doi:10.1016/j.aquatox.2004.03.016

    Google Scholar 

  • Sekine M, Nakanishi H, Ukita M (1996) Study on fish mortality caused by the combined effects of pesticides and changes in environmental conditions. Ecol Model. doi:10.1016/0304-3800(95)00061-5

    Google Scholar 

  • Selye H (1950) Stress and the general adaptation syndrome. Br Med J. doi:10.1136/bmj.1.4667.1383

    Google Scholar 

  • Shinn C (2010) Impact of toxicants on stream fish biological traits. Ph.D Thesis, Université Paul Sabatier-Toulouse III. Toulouse, France

  • Shirakawa H, Yanai S, Goto A (2013) Lamprey larvae as ecosystem engineers: physical and geochemical impact on the streambed by their burrowing behavior. Hydrobiol. doi:10.1007/s10750-012-1293-8

    Google Scholar 

  • Smolders R, Bervoets L, De Boeck G, Blust R (2002) Integrated condition indices as a measure of whole effluent toxicity in zebrafish (Danio rerio). Environ Toxicol Chem. doi:10.1002/etc.5620210113

    Google Scholar 

  • Smolders R, De Boeck G, Blust R (2003) Changes in cellular energy budget as a measure of whole effluent toxicity in zebrafish (Danio rerio). Environ Toxicol Chem. doi:10.1002/etc.5620220429

    Google Scholar 

  • Sokolova IM (2013) Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Int Comp Biol. doi:10.1093/icb/ict028

    Google Scholar 

  • Sullivan K, Martin DJ, Cardwell RD, Toll JE, Duke S (2000) An analysis of the effect of temperature on salmonids on the Pacific northwest with implications for selecting temperature criteria. Sustainable Ecosystems Institute, Portland, Oregon

    Google Scholar 

  • Taghavi L, Probst JL, Merlina G, Marchand AL, Durbe G, Probst A (2010) Flood event impact on pesticide transfer in a small agricultural catchment (Montoussé at Auradé, south west France). Int J Environ Anal Chem. doi:10.1080/03067310903195045

    Google Scholar 

  • Viant MR, Werner I, Rosenblum ES, Gantner AS, Tjeerdema RS, Johnson ML (2003) Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiol Biochem. doi:10.1023/b:fish.0000035938.92027.81

    Google Scholar 

  • Wolf MC, Moore PA (2002) Effects of the herbicide metolachlor on the perception of chemical stimuli by Orconectes rusticus. J North Am Benthol Soc. doi:10.2307/1468482

    Google Scholar 

  • Zheng J-L, Luo Z, Liu C-X, Chen Q-L, Tan X-Y, Zhu QL, Gong Y (2013) Differential effects of acute and chronic zinc (Zn) exposure on hepatic lipid deposition and metabolism in yellow catfish Pelteobagrus fulvidraco. Aqua Toxicol. doi:10.1016/j.aquatox.2013.02.002

    Google Scholar 

Download references

Acknowledgments

We are grateful for technical help provided by Annie Perrault and Yannick Combarieu. Thanks are also due to Lisa Jacquin for helpful comments on an earlier draft.

Compliance with ethical standards

Experimental procedures were conducted under French animal handler’s certificate no. 31-103, giving authorization to experiment on living vertebrates. This work has been carried out as a part of “ADAPT’EAU” (ANR-11-CEPL-008), a project supported by the French National Research Agency (ANR) within the framework of “The Global Environmental Changes and Societies (GEC&S) program.” AG was supported by a doctoral grant of the French Ministry of Higher Education and Research.

Conflict of interest

The authors confirm no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allison Gandar or Séverine Jean.

Additional information

Responsible editor: Cinta Porte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandar, A., Jean, S., Canal, J. et al. Multistress effects on goldfish (Carassius auratus) behavior and metabolism. Environ Sci Pollut Res 23, 3184–3194 (2016). https://doi.org/10.1007/s11356-015-5147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5147-6

Keywords

Navigation