Skip to main content

Advertisement

Log in

Characterization of the microbial community structure and the physicochemical properties of produced water and seawater from the Hibernia oil production platform

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hibernia is Canada’s largest offshore oil platform. Produced water is the major waste byproduct discharged into the ocean. In order to evaluate different potential disposal methods, a comprehensive study was performed to determine the impact from the discharge. Microorganisms are typically the first organisms to respond to changes in their environment. The objectives were to characterize the microbial communities and the chemical composition in the produced water and to characterize changes in the seawater bacterial community around the platform. The results from chemical, physicochemical, and microbial analyses revealed that the discharge did not have a detectable effect on the surrounding seawater. The seawater bacterial community was relatively stable, spatially. Unique microorganisms like Thermoanaerobacter were found in the produced water. Thermoanaerobacter-specific q-PCR and nested-PCR primers were designed, and both methods demonstrated that Thermoanaerobacter was present in seawater up to 1000 m from the platform. These methods could be used to track the dispersion of produced water into the surrounding ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrahamson A, Brandt I, Brunström B, Sundt R, Jørgensen E (2008) Monitoring contaminants from oil production at sea by measuring gill EROD activity in Atlantic cod (Gadus morhua). Environ Pollut 153:169–175

    Article  CAS  Google Scholar 

  • Adams J, Bornstein JA, Munno K, Hollebone B, King T, Brown RS, Hodson PV (2014) Identification of compounds in heavy fuel oil that are chronically toxic to rainbow trout embryos by effects-driven chemical. Environ Toxicol Chem. doi:10.1002/etc.2497

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Armstrong FAJ, Sterns CR, Strickland JDH (1967) The measurement of upwelling and subsequent biological processes by means of the technicon autoanlyzer and associated equipment. Deep-Sea Res 14:381–389

    CAS  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North-Sea-oil field waters. Appl Environ Microbiol 60:1227–1231

    CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L’Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151

    Article  CAS  Google Scholar 

  • Brakstad OG, Lødeng AG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103

    Article  CAS  Google Scholar 

  • Brakstad OG, Nonstad I, Faksness LG, Brandvik PJ (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55:540–552

    Article  Google Scholar 

  • Brooks JM, Estes EL, Wiesenburg DA, Schwab CR, Abdel-Rheim HA (1980) Investigations of surficial sediments, suspended particulates, and volatile hydrocarbons at Buccaneer gas and oil field. In: Jackson WB, Wilkens EP (eds) Environmental assessment of the Buccaneer gas and oil field in the Northwestern Gulf of Mexico, 1978–1980, vol 1, NOAA Technical Memorandum NMFS-SEFC-47. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Galveston, p 98

    Google Scholar 

  • Brooks SJ, Harman C, Grung M, Farmen E, Ruus A, Vingen S, Godal BF, Baršiene J, Andreikenaite L, Skarphéoinsdóttir H, Liewenborg B, Sundt RC (2011) Water column monitoring of the biological effects of produced water from the ekofisk offshore oil installation from 2006 to 2009. J Toxicol Environ Health Part A 74:582–604

    Article  CAS  Google Scholar 

  • Cayol JL, Ollivier B, Patel BKC, Ravot G, Magot M, Ageron E, Grimont PAD, Garcia JL (1995) Description of Thermoanaerobacter brockii subsp lactiethylicus subsp nov, isolated from a deep subsurface French oil-well, a proposal to reclassify Thermoanaerobacter finii as Thermoanaerobacter brockii subsp finnii comb nov, and an emended description of Thermoanaerobacter brockii. Int J Syst Bacteriol 45:783–789

    Article  CAS  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Collins AG (1975) Geochemistry of oilfield waters. Elsevier Scientific Publishers, New York

    Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. User’s Guide and application published at: http://purl.oclc.org/estimates

  • Conmy RN, Coble PG, Farr J, Wood AM, Lee K, Pegau S, Walsh I, Koch C, Abercrombie MI, Miles MS, Lewis MR, Ryan R, Robinson B, King T, Kelble C, Lacoste J (2014) Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring. Environ Sci Technol 48:1803–1810

    Article  CAS  Google Scholar 

  • Dahle H, Garshol F, Madsen M, Birkeland NK (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie Van Leeuwenhoek 93:37–49

    Article  Google Scholar 

  • Davydova-Charakhch’yan IA, Mileeva AN, Mityushina LL, Belyaev SS (1992) Acetogenic bacteria from oil fields of Tataria and Western Siberia (Engl. Trans.). Microbiology 61:306–315

    Google Scholar 

  • Flynn SA, Butler EJ, Vance I (1995) Produced water composition, toxicity and fate: a review of recent BP North Sea studies. In: Reed M, Johnsen S (eds) Produced water 2. Plenum Press, New York, pp 69–80

    Google Scholar 

  • Fortin N, Fulthorpe RR, Allen DG, Greer CW (1998) Molecular analysis of bacterial isolates and total community DNA from kraft pulp mill effluent treatment systems. Can J Microbiol 44:537–546

    Article  CAS  Google Scholar 

  • Furuholt E (1996) Environmental effects of discharge and reinjection of produced water. In: Reed M, Johnsen S (eds) Produced water 2. Environmental issues and mitigation technologies. Plenum Press, New York, pp 275–288

    Google Scholar 

  • Galluzzi L, Penna A, Bertozzini E, Vila M, Garces E, Magnani M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate). Appl Environ Microbiol 70:1199–1206

    Article  CAS  Google Scholar 

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    Article  CAS  Google Scholar 

  • Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443

    Article  CAS  Google Scholar 

  • Grassia GC, McLean KM, Glenat P, Bauld J, Sheehy A (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58

    Article  CAS  Google Scholar 

  • Guo CL, Zhou HW, Wong YS, Tam NF (2005) Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar Pollut Bull 51:1054–1061

    Article  CAS  Google Scholar 

  • Hahn MW (2006) The microbial diversity of inland waters. Curr Opin Biotechnol 17:256–261

    Article  CAS  Google Scholar 

  • Han P, Zheng L, Cui ZS, Guo XC, Tian L (2009) Isolation, identification and diversity analysis of petroleum-degrading bacteria in Shengli Oil Field wetland soil. Ying Yong Sheng Tai Xue Bao 20:1202–1208

    CAS  Google Scholar 

  • Hansen MC, Tolker-Neilson T, Givskov M, Molin S (1998) Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiol Ecol 26:141–149

    Article  CAS  Google Scholar 

  • Harman C, Thomas KV, Tollefsen KE, Meier S, Boyum O, Grung M (2009) Monitoring the freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAH) and alkylphenols (AP) around a Norwegian oil platform by holistic passive sampling. Mar Pollut Bull 58:1671–1679

    Article  CAS  Google Scholar 

  • Hayek LC, Buzas MA (1996) Surveying natural populations. Columbia University Press, New York

    Google Scholar 

  • Hedlund BP, Staley JT (2006) Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ Microbiol 8:178–182

    Article  CAS  Google Scholar 

  • Hylland K, Tollefsen K, Ruus A, Jonsson G, Sundt RC, Sanni S, Røe Utvik TI, Johnsen S, Nilssen I, Pinturier L, Balk L, Barsiene J, Marigòmez I, Feist SW, Børseth JF (2008) Water column monitoring near oil installations in the North Sea 2001–2004. Mar Pollut Bull 56:414–429

    Article  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343

    Article  CAS  Google Scholar 

  • Jha AN (2004) Review. Genotoxicological studies in aquatic organisms: an overview. Mutat Res 552:1–17

    Article  CAS  Google Scholar 

  • Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23:207–221

    Article  CAS  Google Scholar 

  • Kaster KM, Bonaunet K, Berland H, Kjeilen-Eilertsen G, Brakstad OG (2009) Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie Van Leeuwenhoek 96:423–439

    Article  Google Scholar 

  • Keller M, Braun F-J, Dirmeier R, Hafenbradl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395

    Article  CAS  Google Scholar 

  • Kerouel R, Aminot A (1997) Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Mar Chem 57:265–275

    Article  CAS  Google Scholar 

  • Kobayashi H, Endo K, Sakata S, Mayumi D, Kawaguchi H, Ikarashi M, Miyagawa Y, Maeda H, Sato K (2012) Phylogenetic diversity of microbial communities associated with the crude-oil, large-insolble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir. J Biosci Bioeng 113:204–210

    Article  CAS  Google Scholar 

  • Krebs C (1989) Ecological methodology. Harper and Row, New York

    Google Scholar 

  • L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya EA, Stackebrandt E, Jeanthon C (2002) Petrotoga olearia sp. nov., and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722

    Google Scholar 

  • Large R (1990) Characterization of produced water, phase 1: literature survey. Report to Conoco (UK) Ltd., Aberdeen, Scotland

  • Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119

    Article  CAS  Google Scholar 

  • Le Petit J, Bertrand JC, N’Guyen MH, Tagger S (1975) On the taxonomy and physiology of bacteria utilizing hydrocarbons in the sea. Ann Microbiol (Paris) 126:367–380

    Google Scholar 

  • Lee K, Cobanli S, Robinson R, and Wohlgeschaffen G (2011) Application of microbiological methods to assess the potential impact of produced water discharges. In: Lee K, Neff J (eds) Produced water environmental risks and advances in mitigation technologies. pp. 353–373

  • Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2006) Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol Lett 257:92–98

    Article  CAS  Google Scholar 

  • Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2007) Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiol Ecol 60:74–84

    Article  CAS  Google Scholar 

  • Liesack W, Weyland H, Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed culture of strict barophilic bacteria. Microb Ecol 21:191–198

    Article  CAS  Google Scholar 

  • Liu YJ, Chen YP, Jin PK, Wang XC (2009) Bacterial communities in a crude oil gathering and transferring system (China). Anaerobe 15:214–218

    Article  CAS  Google Scholar 

  • Magot M, Caumette P, Desperrier JM, Matheron R, Dauga C, Grimont F, Carreau L (1992) Desulfovibrio longus sp-Nov, a sulfate-reducing bacterium isolated from an oil producing well. Int J Syst Bacteriol 42:398–403

    Article  CAS  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174

    Article  CAS  Google Scholar 

  • Martinez-Murcia AJ, Acinas SG, Rodriguez-Valera F (1995) Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol Ecol 17:247–256

    Article  CAS  Google Scholar 

  • Meyer A, Moser R, Neef A, Stahl U, Kampfer P (1999) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR nad gene probes. Microbiology 145:1731–1741

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:30

    Article  Google Scholar 

  • Nazina TM, Ivanova AE, Borzenkov IA, Belyaev SS, Ivanov MV (1995) Occurrence and geochemical activity of microorganisms in high-temperature, water-flooded oil fields of Kazakhstan and Western Siberia. Geomicrobiol J 13:181–192

    Article  CAS  Google Scholar 

  • Neff JM (1987) Biological effects of drilling fluids, drill cuttings and produced waters. In: Boesch DF, Rabalais NN (eds) Long-term effects of offshore oil and gas development. Elsevier Applied Science Publishers, London, pp 469–538

    Google Scholar 

  • Neff JM (2002) Bioaccumulation in marine organisms. effects of contaminants from oil well produced water. Elsevier Science Publishers, Amsterdam, 452 pp

    Google Scholar 

  • Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207

    Article  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, DeLong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  CAS  Google Scholar 

  • Orphan VJ, Goffredi SK, DeLong EF, Boles JR (2003) Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol J 20:295–311

    Article  CAS  Google Scholar 

  • Paine MD, Leggett WC, McRuer JK, Frank KT (1992) Effects of Hibernia crude oil on capelin (Mallotus villosus) embryos and larvae. Mar Environ Res 33:159–187

    Article  Google Scholar 

  • Piubeli F, Grossman MJ, Fantinatti-Garboggini F, Durrant LR (2014) Phylogenetic analysis of the microbial community in hypersaline petroleum produced water from the Campos Basin. Environ Sci Pollut Res 21:12006–12016

    Article  CAS  Google Scholar 

  • Prince RC, Bare RE, Garrett RM, Grossman MJ, Haith CE, Keim LG, Lee K, Holtom GJ, Lambert P, Sergy GA, Owens EH, Guénette CC (1999) Bioremediation of a marine oil spill in the Arctic. In: Alleman BC, Leeson A (eds) In-situ bioremediation of petroleum hydrocarbon and other organic compounds. Battelle, Columbus, pp 227–232

    Google Scholar 

  • Rabalais NN, McKee BA, Reed DJ, Means JC (1991) Fate and effects of nearshore discharges of OCS produced waters. Vol. 1: executive summary. Vol. 2: Technical Report. Vol. 3. Appendices OCS Studies MMS 91-004. MMS 91-005, and MMS 91-006. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Regional Office, New Orleans, LA

  • Ren H-Y, Zhang X-J, Song Z-Y, Rupert W, Gao G-J, Guo S-X, Zhao L-P (2011) Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir. PLoS One 6:e23258

    Article  CAS  Google Scholar 

  • Reysenbach A-L, Pace NR (1995) In: Robb FT, Place AR (eds) Archaea: a laboratory manual—thermophiles. Cold Spring Harbor Press, Cold Spring Harbor, pp 101–107

    Google Scholar 

  • Rittenhouse G, Fulron RB, Grabowski RJ, Bernard JL (1969) Minor elements in oil field waters. Chem Geol 4:189–209

    Article  CAS  Google Scholar 

  • Røe Utvik TI, Durell GS, Johnsen S (1998) Determining produced water originating polycyclic aromatic hydrocarbons in North Sea waters: comparison of sampling techniques. Mar Pollut Bull 38:977–989

    Article  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds.). Bioinformatics methods and protocols: methods in molecular biology. Humana Press Inc., Totowa (NJ). pp 365–386. Source code available at http://fokker.wi.mit.edu/primer3/

  • Rybakovas A, Baršiene J, Lang T (2009) Environmental genotoxicity and cytotoxicity in the offshore zones of the Baltic and the North Seas. Mar Environ Res 68:246–256

    Article  CAS  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Somerville HJ, Bennett D, Davenport JN, Hold MS, Lynes A, Mahiew A, McCourt B, Parker JG, Stephenson RR, Watkinson RJ, Wilkinson TG (1987) Environmental effect of produced water from North Sea oil operations. Mar Pollut Bull 18:49–558

    Article  Google Scholar 

  • Stagg RM, McIntosh A (1996) Hydrocarbon concentrations in the northern North Sea and effects on fish larvae. Sci Total Environ 186:189–201

    Article  Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen-nov, sp-nov—a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1973) A practical handbook of seawater analysis. Fish Res Board Can Bull 1:155–164

    Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Article  CAS  Google Scholar 

  • Terrens GW, Tait RD (1996) Monitoring ocean concentrations of aromatic hydrocarbons from produced formation water discharges to Bass Strait, Australia. SPE 36033. In: Proceedings of the International Conference on Health, Safety & Environment. Society of Petroleum Engineers, Richardson, pp 739–747

    Google Scholar 

  • Tibbets PJC, Buchanan IT, Gawel LJ, Large R (1992) A comprehensive determination of produced water composition. In: Ray JP, Englhardt FR (eds) Produced water. Plenum Press, New York, pp 97–112

    Chapter  Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629

    CAS  Google Scholar 

  • Wawrik B, Paul JH, Tabita FR (2002) Real-time PCR quantification of RbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl Environ Microbiol 68:3771–3779

    Article  CAS  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham W-R, Lunsdorf H, Timmis KM (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    Article  CAS  Google Scholar 

  • Yeung CW, Lee K, Whyte LG, Greer CW (2010) Microbial community characterization of the gully: a marine protected area. Can J Microbiol 56:421–431

    Article  CAS  Google Scholar 

  • Yeung CW, Law TG, Milligan K, Lee K, Whyte LG, Greer CW (2011a) Analysis of bacterial diversity and metals in produced water, seawater and sediments from an offshore oil and gas production platform. Mar Pollut Bull 62:2095–2105

    Article  CAS  Google Scholar 

  • Yeung CW, Lee K, Greer CW (2011b) Microbial community characterization of produced water from the Hibernia oil production platform. In: Lee K, Neff J (eds) Produced water: environmental risks and advances in mitigation technologies. Springer, New York

    Google Scholar 

  • Yeung CW, Woo M, Lee K, Greer CW (2011c) Characterization of the bacterial community structure of Sydney Tar Ponds sediment. Can J Microbiol 57:493–503

    Article  CAS  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jennifer Mason from the Centre of Offshore Oil, Gas and Energy Research for analytical and technical support.

Compliance with ethical standards

This research represents original data that has not been submitted elsewhere for publication, that all acknowledgements have been made, and that all authors have contributed significantly to the work. There are no real or perceived conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. William Yeung.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

a Standard curves (2.1 × 106 to 0 copies/reaction) from the q-PCR assay. Plasmid DNA was used as the template. Circled numerals: 1, negative control (sterile distilled water); 2 to 7, plasmid DNA serially diluted from 2.1 × 106 to 2.1 × 101 copies/reaction. b Standard curve for six 10-fold serial dilutions of Thermoanaerobacter plasmid DNA (copy number 21 to 2.1 × 106). Quantification was performed by determining the threshold cycle (CT) against the calculated copies of plasmid DNA. The straight line, which was calculated by linear regression, shows an r 2 of 0.99901 with slope (M) of −3.587 and intercept (b) of 36.410 (GIF 91 kb)

High-resolution image (TIFF 14583 kb)

Fig. S2

Correlation between numbers of copies vs. PW/SW dilution. The straight line, which was calculated by linear regression, shows an r 2 of 0.9998, slope of 82,606, and intercept equal to 0 (i.e., no produced water = zero copy). (GIF 17 kb)

High-resolution image (TIFF 5828 kb)

Fig. S3

2008 Hibernia seawater bacterial 16S rRNA gene DGGE fingerprint. a Seawater samples from 1 m depth. b Seawater samples from 50 m depth (GIF 331 kb)

High-resolution image (TIFF 26389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, C.W., Lee, K., Cobanli, S. et al. Characterization of the microbial community structure and the physicochemical properties of produced water and seawater from the Hibernia oil production platform. Environ Sci Pollut Res 22, 17697–17715 (2015). https://doi.org/10.1007/s11356-015-4947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4947-z

Keywords

Navigation