Skip to main content
Log in

Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach

  • Molecular and cellular effects of contamination in aquatic ecosystems
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increasing production and applications of nano zinc oxide particles (nano-ZnO) enhances the probability of its exposure in occupational and environmental settings, but toxicity studies are still limited. Taking the free Zn ion (Zn2+) as a control, cytotoxicity of a commercially available nano-ZnO was assessed with a 6-h exposure in Escherichia coli (E. coli). The fitted dose-cytotoxicity curve for ZnCl2 was significantly sharper than that from nano-ZnO. Then, a genome-wide gene expression profile following exposure to nano-ZnO was conducted by use of a live cell reporter assay system with library of 1820 modified green fluorescent protein (GFP)-expressing promoter reporter vectors constructed from E. coli K12 strains, which resulted in 387 significantly altered genes in bacterial (p < 0.001). These altered genes were enriched into ten biological processing and two cell components (p < 0.05) terms through statistical hypergeometric testing, strongly suggesting that exposure to nano-ZnO would result a great disturbance on the functional gene product synthesis processing, such as translation, gene expression, RNA modification, and structural constituent of ribosome. The pattern of expression of 37 genes altered by nano-ZnO (fold change>2) was different from the profile following exposure to 6 mg/L of free zinc ion. The result indicates that these two Zn forms might cause toxicity to bacterial in different modes of action. Our results underscore the importance of understanding the adverse effects elicited by nano-ZnO after entering aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beyer-Sehlmeyer G, Kreikemeyer B, Horster A, Podbielski A (2005) Analysis of the growth phase-associated transcriptome of Streptococcus pyogenes. Int J Med Microbiol : IJMM 295:161–77

    Article  CAS  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, ColladoVides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453

    Article  CAS  Google Scholar 

  • Bradley MD, Beach MB, de Koning AP, Pratt TS, Osuna R (2007) Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153:2922–40

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–81

    Article  CAS  Google Scholar 

  • Carmody RJ, Cotter TG (2001) Signaling apoptosis: a radical approach. Redox Rep 6:77–90

    Article  CAS  Google Scholar 

  • Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20:115101

    Article  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–90

    Article  CAS  Google Scholar 

  • Goto M, Rosson R, Wampler JM, Elliott WC, Serkiz S, Kahn B (2008) Freundlich and dual Langmuir isotherm models for predicting 137Cs binding on Savannah River Site soils. Health Phys 94:18–32

    Article  CAS  Google Scholar 

  • Gou N, Onnis-Hayden A, Gu AZ (2010) Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis. Environ Sci Technol 44:5964–5970

    Article  CAS  Google Scholar 

  • Haque MM, Kabir MS, Aini LQ, Hirata H, Tsuyumu S (2009) SlyA, a MarR family transcriptional regulator, is essential for virulence in Dickeya dadantii 3937. J Bacteriol 191:5409–18

    Article  CAS  Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir : ACS J Surf Colloids 24:4140–4

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–22

    Article  CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry A 79A:707–12

    CAS  Google Scholar 

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62

    Article  Google Scholar 

  • Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–12

    Article  CAS  Google Scholar 

  • Lin WS, Xu Y, Huang CC, Ma YF, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39

    Article  CAS  Google Scholar 

  • Maddocks SE, Oyston PC (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–23

    Article  CAS  Google Scholar 

  • Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23:733–9

    Article  CAS  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–9

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622–629

    Article  CAS  Google Scholar 

  • Reyes VC, Li M, Hoek EM, Mahendra S, Damoiseaux R (2012) Genome-wide assessment in Escherichia coli reveals time-dependent nanotoxicity paradigms. ACS nano

  • Ross JF, Orlowski M (1982) Growth-rate-dependent adjustment of ribosome function in chemostat-grown cells of the fungus Mucor racemosus. J Bacteriol 149:650–3

    CAS  Google Scholar 

  • Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    Article  CAS  Google Scholar 

  • Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of "nano" titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509

    Article  CAS  Google Scholar 

  • Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–97

    Article  CAS  Google Scholar 

  • Su G, Zhang X, Liu H, Giesy JP, Lam MH, Lam PK, Siddiqui MA, Musarrat J, Al-Khedhairy A, Yu H (2012) Toxicogenomic mechanisms of 6-HO-BDE-47, 6-MeO-BDE-47, and BDE-47 in E. coli. Environ Sci Technol 46:1185–91

    Article  CAS  Google Scholar 

  • Su G, Zhang X, Raine JC, Xing L, Higley E, Hecker M, Giesy JP, Yu H (2013) Mechanisms of toxicity of triphenyltin chloride (TPTC) determined by a live cell reporter array. Environ Sci Pollut Res Int 20:803–11

    Article  CAS  Google Scholar 

  • Su G, Yu H, Lam MH, Giesy JP, Zhang X (2014) Mechanisms of toxicity of hydroxylated polybrominated diphenyl ethers (HO-PBDEs) determined by toxicogenomic analysis with a live cell array coupled with mutagenesis in Escherichia coli. Environ Sci Technol 48:5929–37

    Article  CAS  Google Scholar 

  • Sunder GS, Gopinath NCS, Rao SVR, Kumar CV (2007) Quality assessment of commercial feed grade salts of trace minerals for use in poultry feeds. Anim Nutr Feed Technol 7:29–35

    CAS  Google Scholar 

  • Tama KH, Djurišića AB, Chanc CMN, Xia YY, Tseb CW, Leungb YH, Chanb WK, Leungc FCC, Aud DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174

    Article  Google Scholar 

  • Tuomela S, Autio R, Buerki-Thurnherr T, Arslan O, Kunzmann A, Andersson-Willman B, Wick P, Mathur S, Scheynius A, Krug HF, Fadeel B, Lahesmaa R (2013) Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One 8, e68415

    Article  CAS  Google Scholar 

  • Vladuta C, Andronic L, Duta A (2010) Effect of TiO, nanoparticles on the interface in the PET-rubber composites. J Nanosci Nanotechnol 10:2518–26

    Article  CAS  Google Scholar 

  • Yang C (1998) Statistical mechanical study on the Freundlich isotherm equation. J Colloid Interface Sci 208:379–387

    Article  CAS  Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol : JAT 29:69–78

    Article  Google Scholar 

  • Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628

    Article  CAS  Google Scholar 

  • Zhang XW, Wiseman S, Yu HX, Liu HL, Giesy JP, Hecker M (2011) Assessing the toxicity of naphthenic acids using a microbial genome wide live cell reporter array system. Environ Sci Technol 45:1984–1991

    Article  CAS  Google Scholar 

  • Zhu LZ, Li M, Lin DH (2011) Toxicity of ZnO nanoparticles to Escherichia coil: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    Article  Google Scholar 

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by a grant from Jiangsu science and technology supporting program social development fund (BE2011776). This project was also supported by NSTIP strategic technologies programs (13-ENV2116-02) in the Kingdom of Saudi Arabia.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Zhang or Hongxia Yu.

Additional information

Responsible editor: Cinta Porte

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, G., Zhang, X., Giesy, J.P. et al. Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach. Environ Sci Pollut Res 22, 17434–17442 (2015). https://doi.org/10.1007/s11356-015-4507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4507-6

Keywords

Navigation