Skip to main content

Advertisement

Log in

Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils

  • Microbial Ecology of the Continental and Coastal Environments
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelkader S, Hamed M (2013) In vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. Int Biodeter Biodeg 78:98–102

    Article  Google Scholar 

  • Ali N, Eliyas M, Al-Sarawi H, Radwan SS (2011) Hydrocarbon-utilizing microorganisms naturally associated with sawdust. Chemosphere 83:1268–1272

    Article  CAS  Google Scholar 

  • Amellal N, Portal J-M, Berthelin J (2001) Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil. Appl Geochem 16:1611–1619

    Article  CAS  Google Scholar 

  • Andersson BE, Lundstedt S, Tornberg K, Schürer Y, Öberg LG, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Env Toxicol Chem 22:1238–1243

    Article  CAS  Google Scholar 

  • Babin D, Ding GC, Pronk GJ, Heister K, Kögel-Knabner I, Smalla K (2013) Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene. FEMS Microbiol Ecol 86:3–14

    Article  CAS  Google Scholar 

  • Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, Zifcakova L, Snajdr J, Ridl J, Vlcek C, Voriskova J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258

    Article  CAS  Google Scholar 

  • Barnier C, Ouvrard S, Robin C, Morel JL (2014) Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci Tot Environ 470–471:639–645

    Article  Google Scholar 

  • Biache C, Mansuy-Huault L, Faure P, Munier-Lamy C, Leyval C (2008) Effects of thermal desorption on the composition of two coking plant soils:impact on solvent extractable organic compounds and metal bioavailability. Environ Pollut 156:671–677

    Article  CAS  Google Scholar 

  • Bidaud C, Tran-Minh C (1998) Polycyclic aromatic hydrocarbons (PAHs) biodegradation in the soil of a former gasworks site:selection and study of PAHs-degrading microorganisms. J Mol Catal B-Enzym 5:417–421

    Article  CAS  Google Scholar 

  • Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:S999–S1010

    Article  CAS  Google Scholar 

  • Bonito G, Reynolds H, Robeson MS, Nelson J, Hodkinson BP, Tuskan G, Schadt CW, Vilgalys R (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol 23:3356–3370

    Article  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400

    Article  CAS  Google Scholar 

  • Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159

    Article  Google Scholar 

  • Cébron A, Beguiristain T, Faure P, Norini MP, Masfaraud JF, Leyval C (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Environ Microbiol 75:6322–6330

    Article  Google Scholar 

  • Cébron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13:722–736

    Article  Google Scholar 

  • Cébron A, Faure P, Lorgeoux C, Ouvrard S, Leyval C (2013) Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: consequences on biodegradation. Environ Pollut 177:98–105

    Article  Google Scholar 

  • Chavez-Gomez B, Quintero R, Esparza-Garcia F, Mesta-Howard AM, Diaz Z, de la Serna FJ, Hernadez-Rodriguez CH, Gillen T, Poggi-Varaldo HM, Barrera-Cortes J, Rodriguez-Vazquez R (2003) Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on surgarcane bagasse pith. Biores Technol 89:177–183

    Article  CAS  Google Scholar 

  • Cheng H, Hu E, Hu Y (2012) Impact of mineral micropores on transport and fate of organic contaminants: a review. J Contam Hydrol 129–130:80–90

    Article  Google Scholar 

  • Chung N, Alexander M (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48:109–115

    Article  CAS  Google Scholar 

  • Criquet S, Joner E, Leglize P, Leyval C (2000) Anthracene and mycorrhiza affect the activity of oxidoreductases in the roots and the rhizosphere of lucerne (Medicago sativa L.). Biotechnol Let 22:1733–1737

    Article  CAS  Google Scholar 

  • Cui X, Hunter W, Yang Y, Chen Y, Gan J (2011) Biodegradation of pyrene in sand, silt and clay fractions of sediment. Biodegradation 22:297–307

    Article  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer-Verlag New York Inc., New York

    Book  Google Scholar 

  • da Rocha UN, van Elsas JD, van Overbeek LS (2011) Verrucomicrobia subdivision 1 strains display a difference in the colonization of the leek (Allium porrum) rhizosphere. FEMS Microbiol Ecol 78:297–305

    Article  Google Scholar 

  • da Rocha UN, Plugge CM, George I, van Elsas JD, van Overbeek LS (2013) The rhizosphere selects for particular groups of acidobacteria and verrucomicrobia. PLoS One 13:e82443

    Article  Google Scholar 

  • De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  Google Scholar 

  • Ding GC, Pronk GJ, Babin D, Heuer H, Heister K, Kögel-Knabner I, Smalla K (2013) Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiol Ecol 86:15–25

    Article  CAS  Google Scholar 

  • Dugat-Bony E, Missaoui M, Peyretaillade E, Biderre-Petit C, Bouzid O, Gouinaud C, Hill D, Peyret P (2011) HiSpOD: probe design for functional DNA microarrays. Bioinformatics 27:641–648

    Article  CAS  Google Scholar 

  • Dugat-Bony E, Biderre-Petit C, Jaziri F, David MM, Denonfoux J, Lyon DY, Richard JY, Curvers C, Boucher D, Vogel TM, Peyretaillade E, Peyret P (2012) In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes. Microb Biotechnol 5:642–653

    Article  Google Scholar 

  • El Azhari N, Devers-Lamrani M, Chatagnier G, Rouard N, Martin-Laurent F (2010) Molecular analysis of the catechol-degrading bacterial community in a coal wasteland heavily contaminated with PAHs. J Hazard Mat 177:593–601

    Article  Google Scholar 

  • Felske A, Akkermans ADL, De Vos WM (1998) Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints. Appl Environ Microbiol 64:4581–4587

  • Folman LB, Klein Gunnewiek PJA, Boddy L, de Boer W (2008) Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol Ecol 63:181–191

    Article  CAS  Google Scholar 

  • Fons F, Amellal N, Leyval C, Saint-Martin N, Henry M (2003) Effects of gypsophila saponins on bacterial growth kinetics and on selection of subterranean clover rhizosphere bacteria. Can J Microbiol 49:367–373

    Article  CAS  Google Scholar 

  • Ghislain T, Faure P, Biache C, Michels R (2010) Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils. Environ Sci Technol 44:8547–8552

    Article  CAS  Google Scholar 

  • Goel G, Makkar HPS, Becker K (2008) Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J Appl Microbiol 105:770–777

    Article  CAS  Google Scholar 

  • Hamdi H, Benzarti S, Aoyama I, Jedidi N (2012) Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int Biodeter Biodegr 67:40–47

    Article  CAS  Google Scholar 

  • Han J, Song Y, Liu Z, Hu Y (2011) Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii). FEMS Microbiol Lett 322:15–24

    Article  CAS  Google Scholar 

  • Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) Catalystic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77:1804–1815

    Article  CAS  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  CAS  Google Scholar 

  • Hickey AM, Gordon L, Dobson ADW, Kelly CT, Doyle EM (2007) Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10. Appl Environ Microbiol 74:851–856

    CAS  Google Scholar 

  • Hwang S, Cutright TJ (2003) Effect of expandable clays and cometabolism on PAH biodegradation. Environ Sci Pollut Res 10:277–280

    Article  CAS  Google Scholar 

  • Jacobson DJ, Boesl C, Sultana S, Roenneberg T, Merrow M, Duarte M, Marques I, Ushakova A, Carneiro P, Videira A, Natvig DO, Taylor J (2004a) New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales. Fungal Genet Newl 51S:9

    Google Scholar 

  • Jacobson DJ, Powell AJ, Dettman JR, Saenz GS, Barton MM, Hiltz MD, Dvorachek WH, Glass NL, Taylor JW, Natvig DO (2004b) Neurospora in temperate forests of western North America. Mycologia 96:55–74

    Article  Google Scholar 

  • Johnsen AR, Karlson U (2005) PAH degradation capacity of soil microbial communities—does it depend on PAH exposure? Microb Ecol 50:488–495

    Article  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Kaczorek E, Chrzanowski L, Pijanowska A, Olszanowski A (2008) Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins. Biores Technol 99:4285–4291

    Article  CAS  Google Scholar 

  • Lahlou M, Ortega-Calvo JJ (1999) Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions. Environ Toxicol Chem 18:2729–2735

    Article  CAS  Google Scholar 

  • Lejon DPH, Chaussod R, Ranger J, Ranjard L (2005) Microbial community structure and density under different tree species in an acidic forest soil (Morvan, France). Microb Ecol 50:614–625

    Article  Google Scholar 

  • Liliensiek AK, Thakuria D, Clipson N (2012) Influences of plant species composition, fertilisation and Loliumperenne ingression on soil microbial community structure in three Irish grassland. Microb Ecol 63:509–521

    Article  Google Scholar 

  • Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Reports 4:1–9

    Article  Google Scholar 

  • Liu Z, Jacobson AM, Luthy RG (1995) Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl Environ Microbiol 61:145–151

    CAS  Google Scholar 

  • Liu J, Zhou Q, Ibrahim M, Liu H, Jin G, Zhu B, Xie G (2012) Genome sequence of the biocontrol agent Microbacterium barkeri strain 2011-R4. J Bacteriol 194:6666–6667

    Article  CAS  Google Scholar 

  • Manici LM, Caputo F (2010) Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy. Ann Appl boil 155:245–258

    Article  Google Scholar 

  • Muratova A, Hübner T, Tischer S, Turkovskaya O, Möder M, Kuschk P (2003) Plant – Rhizosphere – Microflora association during phytoremediation of PAH-contaminated soil. Int J Phytorem 5:137–151

    Article  CAS  Google Scholar 

  • Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids. Environ Sci Technol 32:71–74

    Article  CAS  Google Scholar 

  • Neumann D, Heuer A, Hemkemeyer M, Martens R, Tebbe CC (2013) Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol Ecol 86:71–84

    Article  CAS  Google Scholar 

  • Ouvrard S, Barnier C, Bauda P, Beguiristain T, Biache C, Bonnard M, Caupert C, Cébron A, Cortet J, Cotelle S, Dazy M, Faure P, Masfaraud JF, Nahmani J, Palais F, Poupin P, Raoult N, Vasseur P, Morel JL, Leyval C (2011) In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytorem 13:245–263

    Article  Google Scholar 

  • Ouvrard S, Leglize P, Morel JL (2014) PAH phytoremediation: rhizodegradation or rhizoattenuation? Int JPhytorem 16:46–61

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137:187–197

    Article  CAS  Google Scholar 

  • Pernot A, Ouvrard S, Leglize P, Faure P (2013) Protective role of fine silts for PAH in a former industrial soil. Environ Pollut 179:81–87

    Article  CAS  Google Scholar 

  • Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL (2011) Diversity and distribution of foil fungal communities in a semiarid grassland. Mycol 103:10–21

    Article  Google Scholar 

  • Posada-Baquero R, Ortega-Calvo JJ (2011) Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution. Environ Pollut 159:3692–3699

    Article  CAS  Google Scholar 

  • Pritchina O, Ely C, Smets BF (2011) Effects of PAH-contaminated soil on rhizosphere microbial communities. Water Air Soil Pollut 222:17–25

    Article  CAS  Google Scholar 

  • Quantin C, Joner EJ, Portal JM, Berthelin J (2005) PAH dissipation in a contaminated river sediment under oxic and anoxic conditions. Environ Pollut 134:315–322

    Article  CAS  Google Scholar 

  • Reilley KA, Banks MK, Schwab AP (1996) Technical Reports: Organic chemicals in the environment: dissipation of polycyclicaromatic hydrocarbons in the rhizosphere. J Environ Qual 25:212–219

    Article  CAS  Google Scholar 

  • Sanchez C (2009) Lignocellulosic reidues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  Google Scholar 

  • Sei K, Asano KI, Tateishi N, Mori K, Ike M, Fujita M (1999) Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J Biosci Bioengin 88:542–550

    Article  CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  CAS  Google Scholar 

  • Simarro R, Gonzalez N, Batista LF, Molina MC (2013) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiol Ecol 83:438–449

    Article  CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. TRENDS Biotechnol 21:123–130

    Article  CAS  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

  • Tejeda-Agredano MC, Gallego S, Vila J, Grifoll M, Ortega-Calvo JJ, Cantos M (2013) Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol Biochem 57:830–840

    Article  CAS  Google Scholar 

  • Theng BKG, Aislabie J, Fraser R (2001) Bioavailability of phenanthrene intercalated into an alkylammonium-montmorillonite clay. Soil Biol Biochem 33:845–848

    Article  CAS  Google Scholar 

  • Thion C, Cébron A, Beguiristain T, Leyval C (2012a) Long-term in situ dynamics of the fungal communities in a multi-contaminated soil are mainly driven by plants. FEMS Microbiol Ecol 82:169–181

    Article  CAS  Google Scholar 

  • Thion C, Cébron A, Beguiristain T, Leyval C (2012b) PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeter Biodeg 68:28–35

    Article  CAS  Google Scholar 

  • Thomma BPHJ (2003) Alternaria spp. from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236

    Article  CAS  Google Scholar 

  • Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31:2570–2576

    Article  CAS  Google Scholar 

  • Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, Spiteller M, Vogel HJ (2010) Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J Plant Nutr Soil Sci 173:88–99

    Article  CAS  Google Scholar 

  • Turner BC, Perkins DD, Fairfield A (2001) Neurospora from natural populations: a global study. Fungal Genet Biol 32:67–92

    Article  CAS  Google Scholar 

  • Uroz S, Ioannidis P, Lengelle J, Cébron A, Morin E, Buée M, Martin F (2013) Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PlosOne 8:e55929

    Article  CAS  Google Scholar 

  • Uyttebroek M, Breugelmans P, Janssen M, Wattiau P, Joffe B, Karlson U, Ortega-Calvo JJ, Bastiaens L, Ryngaert A, Hausner M, Springael D (2006) Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil. Environ Microbiol 8:836–847

    Article  CAS  Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

  • Vale M, Nguyen C, Dambrine E, Dupouey JL (2005) Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations. Soil Biol Biochem 37:2329–2333

    Article  CAS  Google Scholar 

  • Valinsky L, Della Vedova G, Jiang T, Borneman J (2002) Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition. Appl Environ Microbiol 68:5999–6004

    Article  CAS  Google Scholar 

  • Van Gestel M, Mercks R, Vlassak K (1996) Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of micro-organisms to soil drying. Soil Biol Biochem 28:503–510

    Article  Google Scholar 

  • Volkering F, Breure AM, van Andel JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705

    CAS  Google Scholar 

  • Zhang Y, Zhu YG, Houot S, Qiao M, Nunan N, Garnier P (2011) Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes. Environ Sci Pollut Res 18:1574–1584

    Article  CAS  Google Scholar 

  • Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13:119–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the EC2CO-MicrobiEN program (INSU-CNRS) and the program Investissements d'avenir AMI 2011 VALTEX. The authors thank Rémi Baldo and Noële Raoult for their assistance on the GISFI (www.gisfi.fr) experimental site.

Conflict of interest

No conflict of interest declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Cébron.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cébron, A., Beguiristain, T., Bongoua-Devisme, J. et al. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environ Sci Pollut Res 22, 13724–13738 (2015). https://doi.org/10.1007/s11356-015-4117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4117-3

Keywords

Navigation