Skip to main content
Log in

EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The mechanisms of industrial dye transformation by versatile peroxidase were elucidated. Purified versatile peroxidase from Bjerkandera adusta was able to decolorize different classes of dyes including azo and phthalocyanines, but unable to transform any of the anthraquinones tested. Kinetic constants for selected dyes were determined and the transformation products were analyzed by EPR spectroscopy and mass spectrometry. The EPR and MS analyses of the enzymatic decolorization products showed the cleavage of the azo bond in azo dyes and the total disruption of the phthalocyaninic ring in phthalocyanine dyes. The EPR analysis on two copper-containing dyes, reactive violet 5 (azo) and reactive blue 72 (phthalocyanine), showed that the transformation can or not break the metal-ion coordination bond according the dye nature. The role of the catalytic Trp172 in the dye transformation by a long-range electron transfer pathway was confirmed and the oxidation mechanisms are proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  • Ayala M, Baratto MC, Basosi R, Vazquez-Duhalt R, Pogni R (2001) Spectroscopic characterization of manganese-lignin peroxidase hybrid isoenzyme produced by Bjerkandera adusta in the absence of manganese: evidence of a protein centred radical by hydrogen peroxide. J Mol Catal B Enzym 16:159–167

    Article  Google Scholar 

  • Barr DP, Aust SD (1994) Pollutant degradation by white rot fungi. Environ Contam Toxicol 138:49–72

    CAS  Google Scholar 

  • Blodig W, Smith AT, Winterhalter K, Piontek K (1999) Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Arch Biochem Biophys 370:86–92

    Article  CAS  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330

    Article  CAS  Google Scholar 

  • Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772

    Article  CAS  Google Scholar 

  • Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the C beta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:09–827

    Article  Google Scholar 

  • Chung K-T, Stevens SE, Cerniglia CE (1992) The reduction of azo dyes y the intestinal microflora. Crit Rev Microbiol 18:175–190

    Article  CAS  Google Scholar 

  • Coen JJF, Smith AT, Candeias LP, Oakes J (2001) New insights into mechanisms of dye degradation by one-electron oxidation processes. J Chem Soc Perkin Trans 2:2125–2129

    Article  Google Scholar 

  • Conneely A, Smyth WF, Mc Mullan G (1999) Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium. FEMS Microbiol Lett 179:333–337

    Article  CAS  Google Scholar 

  • d’Alessandro N, Tonucci L, Bressan M, Dragani LK, Morvillo A (2003) Rapid and selective oxidation of metallosulfophthalocyanines prior to their usefulness as precatalysts in oxidation reactions. Eur J Inorg Chem 2003:1807–1814

    Article  Google Scholar 

  • Davila-Vazquez G, Tinoco R, Pickard MA, Vazquez-Duhalt R (2005) Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzym Microb Technol 36:223–231

    Article  CAS  Google Scholar 

  • Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37:15097–15105

    Article  CAS  Google Scholar 

  • Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  • Goodwin TW, Morton RA (1946) The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J 40:628–632

    CAS  Google Scholar 

  • Goszczynski S, Paszczynski A, Pasti-Grigsby MB, Crawford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176:1339–1347

    CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    CAS  Google Scholar 

  • Heinfling A, Bergbauer M, Szewzyk U (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl Microbiol Biotechnol 48:261–266

    Article  CAS  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998a) Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50

    Article  CAS  Google Scholar 

  • Heinfling A, Ruiz-Dueñas J, Martinez MJ, Bergbauer M, Szewzyk U, Martinez AT (1998b) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146

    Article  CAS  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998c) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    CAS  Google Scholar 

  • Heinfling-Weidtmann A, Reemtsma T, Storm T, Szewzyk U (2001) Sulfophthalimide as major metabolite formed from sulfonated phthalocyanine dyes by the white-rot fungus Bjerkandera adusta. FEMS Microbiol Lett 203:179–183

    Article  CAS  Google Scholar 

  • Holcapek M, Jandera P, Prikryl J (1999) Analysis of sulphonated dyes and intermediates by electrospray mass spectrometry. Dye Pigment 43:127–137

    Article  CAS  Google Scholar 

  • Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzym Microb Technol 52:1–12

    Article  CAS  Google Scholar 

  • Jarosz-Wilkolazka A, Kochmanska-Rdest J, Malarczyk E, Wardas W, Leonowicz A (2002) Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzym Microb Technol 30:66–557

    Article  Google Scholar 

  • Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wartishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci U S A 96:1989–1994

    Article  CAS  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  Google Scholar 

  • Lopez C, Moreira MT, Feijoo G, Lema JM (2004) Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor. Biotechnol Prog 20:74–81

    Article  CAS  Google Scholar 

  • Martinez MJ, Ruiz-Duenas FJ, Guillen F, Martinez AT (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  CAS  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    Article  CAS  Google Scholar 

  • Moawad H, El-Rahim WM, Khalafallah M (2003) Evaluation of biotoxicity of textile dyes using two bioassays. J Basic Microbiol 43:218–229

    Article  CAS  Google Scholar 

  • Morales M, Mate MJ, Romero A, Martínez MJ, Martínez AT, Ruiz-Dueñas FJ (2012) Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem 287:41053–41067

    Article  CAS  Google Scholar 

  • Moreira MT, Mielgo I, Feijoo G, Lema JM (2000) Evaluation of different fungal strains in the decolourisation of sythetic dyes. Biotechnol Lett 22:1499–1503

    Article  CAS  Google Scholar 

  • Moreira PR, Bouillenne F, Almeida-Vara E, Malcata FX, Frère JM, Cardoso Duarte J (2006) Purification, kinetics and spectral characterisation of a new versatile peroxidase from a Bjerkandera sp. isolate. Enzym Microb Technol 38:28–33

    Article  CAS  Google Scholar 

  • Paszczynski A, Pasti-Grigsby MB, Goszczynski S, Crawford RL, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dye Pigment 58:179–196

    Article  CAS  Google Scholar 

  • Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29:111–116

    Article  CAS  Google Scholar 

  • Pogni R, Baratto MC, Giansanti S, Teutloff C, Verdin J, Valderrama B, Lendzian F, Lubitz W, Vazquez-Duhalt R, Basosi R (2005) Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44:4267–4274

    Article  CAS  Google Scholar 

  • Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R (2006) A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem 281:9517–9526

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Rakhit G, Antholine WE, Froncisz W, Hyde JS, Pilbrow JR, Sinclair JR, Sarkar B (1985) Direct evidence of nitrogen coupling in the copper(II) complex of bovine serum albumin by S-band electron spin resonance technique. J Inorg Biochem 25:217–224

    Article  CAS  Google Scholar 

  • Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Rodriguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dyes decolorization by laccases from ligninolytic fungi. Curr Microbiol 39:27–32

    Article  Google Scholar 

  • Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999a) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Article  Google Scholar 

  • Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999b) Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn(2+) and different aromatic substrates. Appl Environ Microbiol 65:4705–4707

    Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, Gracía E, Miki Y, Martinez MJ, Martinez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452

    Article  Google Scholar 

  • Sarkar S, Martinez AT, Martinez MJ (1997) Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochim Biophys Acta 1339:23–30

    Article  CAS  Google Scholar 

  • Shin K, Oh I, Kim C (1997) Production and purification of remazol brilliant blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol 63:1744–1748

    CAS  Google Scholar 

  • Spadaro JT, Renganathan V (1994) Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse yellow 3 degradation. Arch Biochem Biophys 312:301–307

    Article  CAS  Google Scholar 

  • Spande TF, Witkop B (1967) Determination of the tryptophan content of proteins with N-bromosuccinimide. Methods Enzymol 11:498–506

    CAS  Google Scholar 

  • Taboada-Puig R, Lú-Chau T, Eibes G, Moreira MT, Feijoo G, Lema JM (2011) Biocatalytic generation of Mn(III)-chelate as a chemical oxidant of different environmental contaminants. Biotechnol Prog 27:668–676

    Article  CAS  Google Scholar 

  • ten Have R, Teunissen PJ (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:2297–3413

    Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–248

    CAS  Google Scholar 

  • Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T (2008) Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2. Appl Environ Microbiol 74:2873–2881

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Westlake DWS, Fedorak PM (1994) Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microbiol 60:459–466

    CAS  Google Scholar 

  • Wang Y, Vazquez-Duhalt R, Pickard MA (2001) Effect of growth conditions on the production of manganese peroxidase by three strains of Bjerkandera adusta. Can J Microbiol 47:277–282

    Article  CAS  Google Scholar 

  • Wang Y, Vazquez-Duhalt R, Pickard MA (2002) Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Curr Microbiol 43:77–87

    Article  Google Scholar 

  • Wang Y, Vazquez-Duhalt R, Pickard MA (2003) Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polyaromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 49:675–682

    Article  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem 267:23688–23695

    CAS  Google Scholar 

  • Wesenberg D, Kyriakidos I, Agathos SN (2003) White-rot fungi and their enzymes from the treatment of industrial dye effluent. Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  • Whitwam RE, Brown KR, Musick M, Natan MJ, Tien M (1997) Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry 36:9766–9773

    Article  CAS  Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rosa Roman for her technical assistance. This project was funded by the National Council of Science and Technology of Mexico (CONACYT) and the Italian MIUR PRIN 2009 STNWX3 and the Italian CSGI Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Vazquez-Duhalt.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baratto, M.C., Juarez-Moreno, K., Pogni, R. et al. EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta . Environ Sci Pollut Res 22, 8683–8692 (2015). https://doi.org/10.1007/s11356-014-4051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-4051-9

Keywords

Navigation