Skip to main content
Log in

Community structure and nutrient level control the tolerance of autotrophic biofilm to silver contamination

  • Microbial Ecology of the Continental and Coastal Environments
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Autotrophic biofilms are complex and fundamental biological compartments of many aquatic ecosystems. Since microbial species differ in their sensitivity to stressors, biofilms have long been proposed for assessing the quality of aquatic ecosystems. Among the many stressors impacting aquatic ecosystems, eutrophication and metal pollution are certainly the most common. Despite that these stressors often occur together, their effects on biofilms have been far much studied separately than interactively. In this study, we evaluated the interactive effects of silver (Ag), a reemerging contaminant, and phosphorus (P), a nutrient often associated with freshwater eutrophication, on the structure and functioning of two types of autotrophic biofilms, one dominated by diatoms and another one dominated by cyanobacteria. We hypothesized that P would alleviate the toxic effects of Ag, either directly, through the contribution of P in metal detoxification processes, or indirectly, through P-mediated shifts in biofilm community compositions and associated divergences in metal tolerance. Results showed that Ag impacted biofilm community structure and functioning but only at unrealistic concentrations (50 μg/L). P availability led to significant shifts in biofilm community composition, these changes being more pronounced in diatom- than those in cyanobacteria-dominated biofilm. In addition, P tended to reduce the impact of Ag but only for the cyanobacteria-dominated biofilm. More generally, our results highlight the preponderant role of the initial community structure and nutrient level on biofilm response to metallic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Admiraal W, Blanck MH, Buckert-De Jong M, Guasch H, Ivorra N, Lehmann V, Nystroe BAH (1999) Short term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res 33:1989–1996

    Article  CAS  Google Scholar 

  • AFNOR (1990) Eaux, Méthodes d’essais: recueil de normes françaises. Association Française de Normalisation, Paris

    Google Scholar 

  • Arce Funck J, Clivot H, Felten V, Rousselle P, Guérold F, Danger M (2013a) Phosphorus availability modulates the toxic effect of silver on aquaticfungi and leaf litter decomposition. Aquat Toxicol 144–145:199–207

    Article  Google Scholar 

  • Arce Funck J, Danger M, Gismondi E, Cossu-Leguille C, Guérold F, Felten V (2013b) Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver. Aquat Toxicol 142–143:73–84

    Article  Google Scholar 

  • Barranguet C, Charantoni E, Plans M, Admiraal W (2000) Short-term response of monospecific and natural algal biofilms to copper exposure. Eur J Phycol 35:397–406

    Article  Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JD, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442

    Article  CAS  Google Scholar 

  • Bérard A, Dorigo U, Humbert JF, Leboulanger C, Seguin F (2002) Application of the pollution-induced community tolerance (PICT) method to algal communities: its values as a diagnostic tool for ecotoxicological risk assessment in the aquatic environment. Ann Limnol Int J Limnol 38:247–261

    Article  Google Scholar 

  • Blanck H, Wänkberg SA, Molander S (1988) Pollution-induced community tolerance - a new ecotoxicological tool. In: Cairs J, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals. American Society for Testing and Materials, Philadelphia, pp 219–230

    Chapter  Google Scholar 

  • Boston HL, Hill WR, Stewart AJ (1991) Evaluating direct toxicity and food-chain effects in aquatic systems using natural periphyton communities. In: Gorsuch JW, Lower WR, Wang W (eds) Plants for toxicity assessment, vol 2. American Society for Testing and Materials, Philadelphia, pp 126–145

    Chapter  Google Scholar 

  • Cardinale M, Brusetti L et al (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

    Article  CAS  Google Scholar 

  • Cattaneo A (1987) Periphyton in lakes of different trophy. Can J Fish Aquat Sci 44:296–302

    Article  Google Scholar 

  • Chao TT, Jenne EA, Heppting LM (1968) Adsorption of traces of silver on sample containers. In: Geological Survey Research, chapter D, pp. 13–15

  • Clements WH, Kiffney PM (1994) Integrated laboratory and field approach for assessing impacts of heavy metals at the Arkansas River, Colorado. Environ Toxicol Chem 13:397–404

    Article  CAS  Google Scholar 

  • Einhellig FA (2004) Mode of allelochemical action of phenolic compounds. In: Macias FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy - chemistry and mode of action of allelochemicals. CRC Press, London, pp 217–238

    Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    CAS  Google Scholar 

  • García-Meza JV, Barranguet C, Admiraal W (2005) Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ Toxicol Chem 24:573–581

    Article  Google Scholar 

  • Garland JL (1996a) Analytical approaches to the characteriztion of samples of microbial communities using patterns of potential C sources utilization. Soil Biol Biochem 28:213–221

    Article  CAS  Google Scholar 

  • Garland JL (1996b) Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 28:223–230

    Article  CAS  Google Scholar 

  • Genter RB, Cherry DS, Smith EP, Cairns J Jr (1987) Algal-periphyton population and community changes from zinc stress in stream mesocosms. Hydrobiologia 153:261–275

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM et al (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Guasch H, Martí E, Sabater S (1995) Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwat Biol 33:373–383

    Article  Google Scholar 

  • Guasch H, Paulsson M, Sabater S (2002) Effect of copper on algal communities from oligotrophic calcareous streams. J Phycol 38:241–248

    Article  CAS  Google Scholar 

  • Guasch H, Admiraal W, Sabater S (2003) Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquat Toxicol 64:165–175

    Article  CAS  Google Scholar 

  • Guasch H, Navarro E, Serra A, Sabater S (2004) Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwat Biol 49:463–473

    Article  CAS  Google Scholar 

  • Hadoux E, Plaire M, et al. (2010) PHYTOBS v2.0: Outil de comptage du phytoplancton et de calcul de biovolumes en laboratoire. Version 2.0. Application JAVA

  • Herbert HPF, Li-Chong X, Kwong-Yu C (2002) Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 36:4709–4716

    Article  Google Scholar 

  • Hillebrand H, Durselen CD et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hogstrand C, Wood CM (1998) Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: Implications for water quality criteria. Environ Toxicol Chem 17:547–561

    Article  CAS  Google Scholar 

  • Huber-Pestalozzi G (1938) Das Phytoplankton des Susswassers : Systematik und Biologie. Stuttgart, E. Schweizerbart’sche Verlagsbuchhandlung

  • Ivorra N, Bremer S, Guasch H, Kraak MHS, Admiraal W (2000) Differences in sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ Toxicol Chem 19:1332–1339

    Article  CAS  Google Scholar 

  • Izaguirre G (1992) A copper-tolerant Phormidium species from lake Mathews, California, that produces 2-methylisoborneol and geosmin. Water Sci Technol 25:217–223

    CAS  Google Scholar 

  • Juneau P, El Berdey A, Popovic R (2002) PAM fluorometry in the determination of the sensitivity of Chlorella vulgaris, selenastrum capricornutum, and chlamydomonas reinhardtii to copper. Arch Environ Contam Toxicol 42:155–164

    Article  CAS  Google Scholar 

  • Kilham SS, Kreeger DA et al (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159

    Article  CAS  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcales. Stuttgart, In Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds), Süsswasserflora von Mitteleuropa 19/1, Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, 548 pp.

  • Koukal B, Guéguen C, Pardos M, Dominik J (2003) Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata. Chemosphere 53:953–961

  • Küster A, Altenburger R (2007) Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere 67:194–201

    Article  Google Scholar 

  • Leflaive J, Danger M, Lacroix G, Lyautey E, Oumarou C, Ten-Hage L (2008) Nutrient effects on genetic and functional diversity of bacterial communities. FEMS Microbiol Ecol 66:379–390

    Article  CAS  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  Google Scholar 

  • López-Flores R, Quintana XD, Salvadó V, Hidalgo M, Sala LL, Moreno-Amich R (2003) Comparison of nutrient and contaminant fluxes in two areas with different hydrological regimes (Emporda’ Wetlands, NE Spain). Water Res 37:3034–3046

    Article  Google Scholar 

  • Luoma SN (2008) Silver nanotechnologies and the environment: Old problems or New challenges? Woodrow Wilson International Center for Scholars, Washington DC

    Google Scholar 

  • Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, Cambridge

    Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silvernanomaterials and potential implications for human health and the environ-ment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Marks JC, Lowe RL (1989) The independent and interactive effects of snail grazing and nutrient enrichment on structuring periphyton communities. Hydrobiologia 185:9–17

    Article  Google Scholar 

  • Massee R, Maessen FJMJ, De Goeij JJM (1981) Losses of silver, arsenic, cadmium, selenium and zinc traces from distilled water and artificial sea-water by sorption on various container surfaces. Anal Chim Acta 127:181–193

    Article  CAS  Google Scholar 

  • McCormick PA, Stevenson RJ (1998) Periphyton as a tool for ecological assessment and management in the Florida Everglades. J Phycol 4:726–733

    Article  Google Scholar 

  • Moffett JW, Brand LE (1996) Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol Oceanogr 41:388–395

    Article  CAS  Google Scholar 

  • Murdock JN, Wetzel DL (2012) Macromolecular response of individual algal cells to nutrient and atrazine mixtures within biofilms. Micro Ecol 63:761–772

    Article  CAS  Google Scholar 

  • Murdock JN, Shields FD Jr, Lizotte RE Jr (2013) Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff. Ecotoxicology 22:215–230

    Article  CAS  Google Scholar 

  • Navarro E, Guasch H, Sabater S (2002) Use of microbenthic algal communities on ecotoxicological tests for the assessment of water quality. J Appl Phycol 14:41–48

    Article  Google Scholar 

  • Ndungu K (2011) Dissolved silver in the Baltic Sea. Environ Res 111:45–49

    Article  CAS  Google Scholar 

  • Nichols JW, Brown S, Wood CM, Walsh PJ, Playle RC (2006) Influence of salinity and organic matter on silver accumulation in Gulf toadfish (Opsanus beta). Aquat Toxicol 78:253–261

    Article  CAS  Google Scholar 

  • Pringle CM (1987) Effects of water and substratum nutrient supplies on lotic periphyton growth: an integrated bioassay. Can J Fish Aquat Sci 44:619–629

    Article  CAS  Google Scholar 

  • Proia L, Cassio F, Pascoal C, Tlili A, Romani AM (2012) The use of attached microbial communities to assess ecological risks of pollutants in river ecosystems: the role of heterotrophs. In: Guasch H (ed) Emerging and priority pollutants in rivers, Hdb Env Chem. Springer, Berlin Heidelberg, pp 55–84

    Chapter  Google Scholar 

  • Project on Emerging Nanotechnology (2012) Consumer Products Inventories for Nanotechnology Products http://www.nanotechproject.org/inventories/consumer/analysis

  • Ranjard L, Poly F et al (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variablitity. Appl Environ Microbiol 67:4479–4487

    Article  CAS  Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  • Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363

    Article  Google Scholar 

  • Roussel H, Ten-Hage L, Joachim S, Le Cohu R, Gauthier L, Bonzom J-M (2007) A long-term copper exposure on freshwater ecosystem using lotic mesocosms: primary producer community responses. Aquat Toxicol 81:168–182

    Article  CAS  Google Scholar 

  • Say PJ, Whitton BA (1981) Chemistry and plant ecology of zinc rich streams in Northern Pennines. In: Say PJ, Whitton BA (eds) Heavy metals in Northern England: environmental and biological aspects. University of Durham, Durham, pp 53–63

    Google Scholar 

  • Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425–1434

  • Schmitt-Jansen M, Altenburger R (2008) Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. Aquat Toxicol 86:49–58

    Article  CAS  Google Scholar 

  • Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol V. Kluwer Academic Publishers, Dordrecht, pp 4253–4258

    Google Scholar 

  • Serra A, Guasch H (2009) Effects of chronic copper exposure on fluvial systems: Linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Sci Total Environ 407:5274–5282

    Article  CAS  Google Scholar 

  • Serra A, Guasch H, Admiraal W, Van der Geest HG, Van Beusekom SAM (2010) Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors. Ecotoxicology 19:770–780

    Article  CAS  Google Scholar 

  • Shea K, Roxburgh SH, Rauschert ESJ (2004) Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecol Lett 7:491–508

    Article  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Poll 100:179–196

    Article  CAS  Google Scholar 

  • Soldo D, Behra R (2000) Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol 47:181–189

    Article  CAS  Google Scholar 

  • Stevenson RJ, Bothwell ML, Lowe RL (1996) Algal ecology: freshwater benthic ecosystems. Academic, San Diego

    Google Scholar 

  • Tetu SG et al. (2013) Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species. Front Microbiol 4

  • Tlili A, Bérard A, Roulier J-L, Volata B, Montuelle B (2010) PO4 3− dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat Toxicol 98:165–177

    Article  CAS  Google Scholar 

  • Twiss MR, Nalewajko C (1992) Influence of phosphorus nutrition on copper toxicity to three strains of Scenedesmus acutus (Chlorophyceae). J Phycol 28:291–298

    Article  CAS  Google Scholar 

  • Wetzel RG (1983) Opening remarks. In: Wetzel RG (ed) Periphyton of freshwater ecosystems. Dr W. Junk Publisher, The Hague, pp 3–4

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the ICARE EC2CO MicrobiEn program to MD. We are grateful to P. Rousselle for his help during chemical analyses and to P Bonin, R Duran, and D Faure for their invitation to participate to this special issue. We also thank anonymous reviewers for their useful and constructive comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Danger.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leflaive, J., Felten, V., Ferriol, J. et al. Community structure and nutrient level control the tolerance of autotrophic biofilm to silver contamination. Environ Sci Pollut Res 22, 13739–13752 (2015). https://doi.org/10.1007/s11356-014-3860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3860-1

Keywords

Navigation