Skip to main content

Advertisement

Log in

Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul RM, Mutnuri L, Dattatreya PJ, Mohan DA (2012) Assessment of drinking water quality using ICP-MS and microbiological methods in the Bholakpur area, Hyderabad, India. Environ Monit Assess 184(3):1581–1592

    Article  CAS  Google Scholar 

  • Adrian WJ (1973) A comparison of a wet pressure digestion method with other commonly used wet and dry-ashing methods. Analyst 98(1164):213–216

    Article  CAS  Google Scholar 

  • Agoramoorthy G (2006) Computer ‘recycling’builds garbage dumps overseas. Nature 441(7089):25

    Article  CAS  Google Scholar 

  • Agoramoorthy G, Chakraborty C (2012) Environment: Control electronic waste in India. Nature 485(7398):309

    Article  CAS  Google Scholar 

  • Asante KA, Agusa T, Biney CA, Agyekum WA, Bello M, Otsuka M, Itai T, Takahashi S, Tanabe S (2012) Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana. Sci Total Environ 424:63–73

    Article  CAS  Google Scholar 

  • Brigden K, Labunska I, Santillo D, Allsopp M (2005) Recycling of electronic wastes in China and India: workplace and environmental contamination (trans: Department of Biological Sciences GPRL). Greenpeace International, vol 55. University of Exeter, Exeter EX4 4PS, UK, Exeter, UK

  • Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42(3):399–411

    Article  CAS  Google Scholar 

  • Chen TB, Zheng YM, Lei M, Huang ZC, Wu HT, Chen H, Fan KK, Yu K, Wu X, Tian QZ (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 60(4):542–551

    Article  CAS  Google Scholar 

  • Daud M, Wasim M, Khalid N, Zaidi JH, Iqbal J (2009) Assessment of elemental pollution in soil of Islamabad city using instrumental neutron activation analysis and atomic absorption spectrometry techniques. Radiochim Acta 97(2):117–121

    Article  CAS  Google Scholar 

  • Deng WJ, Louie PKK, Liu WK, Bi XH, Fu JM, Wong MH (2006) Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2.5 at an electronic waste recycling site in southeast China. Atmos Environ 40(36):6945–6955

    Article  CAS  Google Scholar 

  • Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, Jiang G (2008) High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71(7):1269–1275

    Article  CAS  Google Scholar 

  • Guo Y, Huang C, Zhang H, Dong Q (2009) Heavy metal contamination from electronic waste recycling at Guiyu, Southeastern China. J Environ Qual 38(4):1617–1626

    Article  CAS  Google Scholar 

  • Guo Y, Huo X, Li Y, Wu K, Liu J, Huang J, Zheng G, Xiao Q, Yang H, Wang Y, Chen A, Xu X (2010) Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Sci Total Environ 408(16):3113–3117

    Article  CAS  Google Scholar 

  • Ha NN, Agusa T, Ramu K, Tu NPC, Murata S, Bulbule KA, Parthasaraty P, Takahashi S, Subramanian A, Tanabe S (2009) Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere 76(1):9–15

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control.asedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Herat S, Agamuthu P (2012) E-waste: a problem or an opportunity? Review of issues, challenges and solutions in Asian countries. Waste Manag Res 30(11):1113–1129

    Article  Google Scholar 

  • Hischier R, Wäger P, Gauglhofer J (2005) Does WEEE recycling make sense from an environmental perspective?: The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE). Environ Impact Assess Rev 25(5):525–539

    Article  Google Scholar 

  • Hjm B (1979) Environmental chemistry of the elements. Press London, Acad

    Google Scholar 

  • Iqbal S, Wasim M, Tufail M, Arif M, Chaudhry M (2012) Elemental contamination in urban parks of Rawalpindi/Islamabad—a source identification and pollution level assessment study. Environ Monit Assess 184(9):5497–5510

    Article  CAS  Google Scholar 

  • Johri R (2008) E-waste: implications, regulations, and management in India and current global best practices. TERI Press, New Delhi, India

    Google Scholar 

  • Jun-hui Z, Hang M (2009) Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area. J Hazard Mater 165(1):744–750

    Article  Google Scholar 

  • Li H, Yu L, Sheng G, Fu J, Peng P (2007) Severe PCDD/F and PBDD/F pollution in air around an electronic waste dismantling area in China. Environ Sci Technol 41(16):5641–5646

    Article  CAS  Google Scholar 

  • Li J, Duan H, Shi P (2011) Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis. Waste Manag Res 29(7):727–738

    Article  CAS  Google Scholar 

  • Li Y, Xu X, Liu J, Wu K, Gu C, Shao G, Chen S, Chen G, Huo X (2008) The hazard of chromium exposure to neonates in Guiyu of China. Sci Total Environ 403(1–3):99–104

    Article  CAS  Google Scholar 

  • Lim SRSJ (2010) Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities. Waste Manag 30(8–9):1653–1660

    Article  CAS  Google Scholar 

  • Lisk DJ (1988) Environmental implications of incineration of municipal solid waste and ash disposal. Sci Total Environ 74:39–66

    Article  CAS  Google Scholar 

  • Liu X, Tanaka M, Matsui Y (2006) Electrical and electronic waste management in China: progress and the barriers to overcome. Waste Manag Res 24(1):92–101

    Article  Google Scholar 

  • Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G, Li X (2011) Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J Hazard Mater 186(1):481–490

    Article  CAS  Google Scholar 

  • Ma J, Kannan K, Cheng J, Horii Y, Wu Q, Wang W (2008) Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China. Environ Sci Technol 42(22):8252–8259

    Article  CAS  Google Scholar 

  • Mohabuth N, Hall P, Miles N (2007) Investigating the use of vertical vibration to recover metal from electrical and electronic waste. Miner Eng 20(9):926–932

    Article  CAS  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geo Journal 2(3):108–118

    Google Scholar 

  • Muller G (1981) The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking. Chemiker-Zeitung 105:157–164

    Google Scholar 

  • Ogunseitan OA, Schoenung JM, Saphores J-DM, Shapiro AA (2009) The electronics revolution: from e-wonderland to e-wasteland. Science 326(5953):670

    Article  CAS  Google Scholar 

  • Pacyna JM, Winchester JW (1990) Contamination of the global environment as observed in the Arctic. Glob Planet Change 2(1–2):149–157

    Article  Google Scholar 

  • Quevauviller P, Lavigne R, Cortez L (1989) Impact of industrial and mine drainage wastes on the heavy metal distribution in the drainage basin and estuary of the Sado River (Portugal). Environ Pollut 4:267–286

    Article  Google Scholar 

  • Reimann C, Caritat P (2000) Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol 34(24):5084–5091

    Article  CAS  Google Scholar 

  • Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408(2):183–191

    Article  CAS  Google Scholar 

  • Røpke I (2001) New technology in everyday life—social processes and environmental impact. Ecol Econ 38(3):403–422

    Article  Google Scholar 

  • Schiff KC, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Mar Environ Res 48(2):161–176

    Article  CAS  Google Scholar 

  • Sharma S (1995) Applied multivariate techniques. John Wiley & Sons, Inc.

  • Shaw PJA (2003) Multivariate statistics for the environmental sciences. Wiley, Chichester

    Google Scholar 

  • Shen C, Huang S, Wang Z, Qiao M, Tang X, Yu C, Shi D, Zhu Y, Shi J, Chen X, Setty K, Chen Y (2008) Identification of ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China. Environ Sci Technol 42(1):49–55

    Article  CAS  Google Scholar 

  • Standard I (2005) Drinking water-specification. Second Revision, IS, 10500

  • Stenhammar L (1999) Diarrhoea following contamination of drinking water with copper. Eur J Med Res 4(6):217

    CAS  Google Scholar 

  • Sthiannopkao S, Wong MH (2013) Handling e-waste in developed and developing countries: Initiatives, practices, and consequences. Sci Total Environ 463–464:1147–1153

    Article  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Environ Geol 33(2):241–265

    Google Scholar 

  • Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31(1):45–58

    Article  CAS  Google Scholar 

  • University UN (2012) E-waste: Annual gold, silver 'deposits' in new high-tech goods worth $21B; less than 15 % recovered. ScienceDaily. www.sciencedaily.com/releases/2012/07/120706164159.htm. Accessed January 28 2014

  • USEPA (2013) Regional Screening Levels, Region 9: Superfund, (Last updated May 2013)

  • USEPA (1996) Method 3050B (SW-846): Acid Digestion of Sediments, Sludges, and Soils. http://www.epa.gov/sam/pdfs/EPA-3050b.pdf. Accessed 19 Feb 2014

  • Vandeginste B, Massart D, Buydens L, De Jong S, Lewi P, Smeyers-Verbeke J (1998) Handbook of Chemometrics and Qualimetrics: Part B. Elsevier, Amsterdam

    Google Scholar 

  • Wagner TP (2009) Shared responsibility for managing electronic waste: A case study of Maine, USA. Waste Manag 29(12):3014–3021

    Article  Google Scholar 

  • Watching R (2006) E-junk crisis mounts. Science 314:1519

    Google Scholar 

  • WHO (2012) Guidelines for drinking-water quality, fourth edition. World Health Organization

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. ChemometrIntell 2(1):37–52

    CAS  Google Scholar 

  • Wong CS, Duzgoren-Aydin NS, Aydin A, Wong MH (2007a) Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China. Environ Pollut 148(1):62–72

    Article  CAS  Google Scholar 

  • Wong CS, Wu SC, Duzgoren-Aydin NS, Aydin A, Wong MH (2007b) Trace metal contamination of sediments in an e-waste processing village in China. Environ Pollut 145(2):434–442

    Article  CAS  Google Scholar 

  • Wong MH, Wu SC, Deng WJ, Yu XZ, Luo Q, Leung AOW, Wong CSC, Luksemburg WJ, Wong AS (2007c) Export of toxic chemicals – A review of the case of uncontrolled electronic-waste recycling. Environ Pollut 149(2):131–140

    Article  CAS  Google Scholar 

  • Wu K, Xu X, Liu J, Guo Y, Li Y, Huo X (2010) Polybrominateddiphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China. Environ Sci Technol 44(2):813–819

    Article  CAS  Google Scholar 

  • Yao ZT, Li JH, Zhao XY (2013) Destruction of decabromodiphenyl ether (BDE-209) in a ternary carbonate molten salt reactor. J Environ Manag 127:244–248

    Article  CAS  Google Scholar 

  • Yu J, Williams E, Ju M, Yang Y (2010) Forecasting global generation of obsolete personal computers. Environ Sci Technol 44(9):3232–3237

    Article  CAS  Google Scholar 

  • Yu XZ, Gao Y, Wu SC, Zhang HB, Cheung KC, Wong MH (2006) Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China, affected by recycling of electronic waste using primitive technologies. Chemosphere 65(9):1500–1509

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Ministry of Environment and Forest (MOEF), Government of India for financial support to carry out this research (Grant No. 19-46/2007-RE). Special thanks to the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. The authors thank the management of Jaypee University of Information Technology for providing suitable infrastructure for conducting these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar.

Additional information

Responsible editor: Vera Slaveykova

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, J.K., Kumar, S. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India. Environ Sci Pollut Res 21, 7913–7928 (2014). https://doi.org/10.1007/s11356-014-2713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2713-2

Keywords

Navigation