Skip to main content
Log in

Quantification and in situ localisation of abcb1 and abcc9genes in toxicant-exposed sea urchin embryos

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A multixenobiotic resistance (MXR) mechanism mediated by ABC binding cassette (ABC) transport proteins is an efficient chemical defence mechanism in sea urchin embryos. The aim of our work was to evidence whether exposure to sub-lethal doses of specific contaminants (oxybenzone (OXI), mercuric chloride (HgCl2) and trybutiltin (TBT)) would induce MXR transporter activity during embryonic development (from zygote to blastula stage) in purple sea urchin (Paracentrotus lividus) embryos. Further, we present data on molecular identification, transport function, expression levels and gene localisation of two ABC efflux transporters—P-glycoprotein (ABCB1/P-gp) and sulfonylurea-receptor-like protein (ABCC9/SUR-like). Partial cDNA sequences of abcb1 and abcc9 were identified and quantitative PCR (qPCR) evidenced an increase in mRNA transcript levels of both ABC transporters during the two-cell, as well as an overall decrease during the blastulae stage. Calcein-AM efflux activity assay indicated the activation of multidrug resistance-associated protein/ABCC-like transport in the presence of HgCl2 and TBT in exposed blastulae. The in situ hybridisation of the two-cell and blastula stages showed ubiquitous localisation of both transcripts within cells, supporting qPCR data. In conclusion, ABCB1 and ABCC9 are constitutive, as are HgCl2, TBT and OXI-inducible ABC membrane transporters, coexpressed in the zygote, two-cell and blastula stages of the P. lividus. Their ubiquitous cell localisation further fortifies their protective role in early embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  CAS  Google Scholar 

  • Anselmo HMR, van den Berg JHJ, Rietjens IMCM, Murk AJ (2012) Inhibition of cellular efflux pumps involved in multi xenobiotic resistance (MXR) in echinoid larvae as a possible mode of action for increased ecotoxicological risk of mixtures. Ecotoxicology 21:2276–2287

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34:292–308

    Article  CAS  Google Scholar 

  • Borst P, Evers R, Kool M, Wijnholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    Article  CAS  Google Scholar 

  • Bošnjak I, Uhlinger KR, Heim W, Smital T, Franekić Čolić J, Coale K, Epel D, Hamdoun A (2009) Multidrug efflux transporters limit accumulation of inorganic, but not organic mercury in sea urchin embryos. Environ Sci Technol 43:8374–8380

    Article  Google Scholar 

  • Bošnjak I, Šegvić T, Smital T, Franekić J, Mladineo I (2011) Sea urchin embryotoxicity test for environmental contaminants—potential role of the MRP proteins. Water Air Soil Poll 217:627–636

    Article  Google Scholar 

  • Claudet J, Fraschetti S (2010) Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol Cons 143:2195–2206

    Article  Google Scholar 

  • Cole SPC, Deeley RG (1998) Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. BioEssays 20:931–940

    Article  CAS  Google Scholar 

  • Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  CAS  Google Scholar 

  • Cole B, Hamdoun A, Epel D (2009) Costs, benefits, and developmental expression of multidrug transporter proteins in S. purpuratus embryos. Developmental biology of the sea urchin XIX, Marine Biology Laboratory, Woods Hole, MA, September 30th–October 3rd, 2009, pp 22–23

  • Cossa D, Martin JM, Takayanagi K, Sanjuan J (1997) The distribution and cycling of mercury species in the western Mediterranean. Deep Sea Res Part II 44:721–40

    Article  CAS  Google Scholar 

  • Dassa E, Bouige P (2001) The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152:211–229

    Article  CAS  Google Scholar 

  • Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Article  CAS  Google Scholar 

  • Deeley RG, Westlake C, Cole SPC (2006) Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86:849–899

    Article  CAS  Google Scholar 

  • Epel D, Luckenbach T, Stevenson CN, MacManus-Spencer LA, Hamdoun A, Smital T (2008) Efflux transporters: newly appreciated roles in protection against pollutants. Environ Sci Technol 42:3914–3920

    Article  CAS  Google Scholar 

  • Ernst SG (1997) A century of sea urchin development. Amer Zool 37:250–259

    Google Scholar 

  • Faria M, Navarro A, Luckenbach T, Pina B, Barata C (2011) Characterization of the multixenobiotic resistance (MXR) mechanism in embryos and larvae of the zebra mussel (Dreissena polymorpha) and studies on its role in tolerance to single and mixture combinations of toxicants. Aquat Toxicol 101:78–87

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fernández N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10:263–271

    Article  Google Scholar 

  • Fischer S, Lončar J, Zaja R, Schnell S, Schimer K, Smital T, Luckenbach T (2011) Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 101:438–446

    Article  CAS  Google Scholar 

  • Goldstone JV, Hamdoun A, Cole BJ, Howard–Ashby M, Nebert DW, Scally M, Dean M, Epel D, Hahn ME, Stegeman JJ (2006) The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev Biol 300:366–384

    Article  CAS  Google Scholar 

  • Hamdoun A, Epel D (2007) Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci U S A 104:1745–50

    Article  CAS  Google Scholar 

  • Hamdoun AM, Griffin FJ, Cherr GN (2002) Tolerance to biodegraded crude oil in marine invertebrate resistance proteins: biology, substrate specificity and regulation. Curr Drug Metabol 5:21–53

    Google Scholar 

  • Hamdoun AM, Cherr GN, Roepke TA, Epel D (2004) Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus). Dev Biol 276:452–462

    Article  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  Google Scholar 

  • Hills DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. System Biol 42:182–192

    Google Scholar 

  • His E, Heyvang I, Geffard O, de Montaudouin X (1999) A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res 33:1706–1718

    Article  CAS  Google Scholar 

  • Kurelec B (1992) The multixenobiotic resistance mechanism in aquatic organisms. Crit Rev Toxicol 22:23–43

    Article  CAS  Google Scholar 

  • Leslie EM, Deeley RG, Cole SPC (2005) Multidrug resistance proteins: role of P– glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204:216–237

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Luckenbach T, Epel D (2008) ABCB- and ABCC-type transporters confer multixenobiotic resistance and form an environment–tissue barrier in bivalve gills. Am J Physiol Regul Integr Comp Physiol 294:R1919–R1929

    Article  CAS  Google Scholar 

  • Lüdeking A, Köhler A (2002) Identification of six mRNA sequences of genes related to multixenobiotic resistance (MXR) and biotransformation in Mytilus edulis. Mar Ecol Prog Ser 238:115–124

    Article  Google Scholar 

  • Minier C, Eufemia E, Epel D (1999) The multi-xenobiotic resistance phenotype as a tool to biomonitor the environment. Biomarkers 4:442–454

    Article  CAS  Google Scholar 

  • Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1379

    CAS  Google Scholar 

  • Panten U, Schwanstecher M, Schwanstecher C (1996) Sulfonylurea receptors and mechanism of sulfonylurea action. Exp Clin Endocrinol Diabetes 104:1–9

    Article  CAS  Google Scholar 

  • Ransick A (2004) Detection of mRNA by in situ hybridization and RT-PCR. In: Ettensohn CA, Wray GA, Wessel GM (eds) Methods in cell biology, vol 74. Elsevier, Amsterdam, pp 601–620

    Google Scholar 

  • Roepke TA, Hamdoun AM, Cherr GN (2006) Increase in multidrug transport activity is associated with oocytes maturation in sea stars. Dev Growth Differ 48:559–573

    Article  CAS  Google Scholar 

  • Schlenk D, Sapozhnikova Y, Irwin MA, Xie L, Hwang W, Reddy S, Brownawell BJ, Armstrong J, Kelly M, Montagne DE, Kolodziej EP, Sedlak D, Snyder S (2005) In vivo bioassay-guided fractionation of marine sediment extracts from the Southern California Bight, USA, for estrogenic activity. Environ Toxicol Chem 24:2820–2826

    Article  CAS  Google Scholar 

  • Shipp LE, Hamdoun A (2012) ATP-binding cassette (ABC) transporter expression and localization in sea urchin development. Dev Dyn 241:1111–1124

    Article  CAS  Google Scholar 

  • Sweet H, Amemiya S, Ransick A, Minokawa T, McClay DR, Wikramanayake A, Kuraishi R, Kiyomoto M, Nishhida H, Henry J (2004) Removal of fertilization envelope of sea urchin eggs. In: Wilson L, Matsudaira P (eds) Methods in cell biology. Elsevier, San Diego, pp 248–249

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Wang Q, Wang X, Wang X, Yang H, Liu B (2010) Analysis of metallothionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure. Aquat Toxicol 100:321–328

    Article  CAS  Google Scholar 

  • Zaja R, Sauerborn Klobučar R, Smital S (2007) Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line. Aquat Toxicol 81:365–376

    Article  CAS  Google Scholar 

  • Zaja R, Munić V, Sauerborn Klobučar R, Ambriović-Ristov A, Smital A (2008) Cloning and molecular characterization of apical efflux transporters (ABCB1, ABCB11 and ABCC2) in rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 90:322–332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the European Community—Research Infrastructure Action under the FP7 “Capacities” Specific Programme, referring to ASSEMBLE grant agreement (Project no. 227799) and the Croatian Ministry of Science, Education and Sport (Project No.001-0000000-3633). Special acknowledgements go to Dr. Maria Ina Arnone and Dr. Rossella Annunziata for help with technical advices and inspiring scientific talks at the Stazione Zoologica Anton Dohrn in Naples, Italy. For administrative and technical help during our stay, we thank Dr. Euan Brown. We thank Dr. Roko Žaja and Dr. Tvrtko Smital (Ruđer Bosković Institute, Zagreb, Croatia) and Dr. Lidija Šver (Faculty of Food Technology and Biotechnology, Zagreb, Croatia) for help with ABC transporter sequences. We also thank Dr. Tvtko Smital for help with reading the manuscript. And finally we thank Dr. Till Luckenbach of the Helmholtz Centre for Environmental Research (UFZ) (Leipzig, Germany) for the critical suggestions and reading of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivona Mladineo.

Additional information

Responsible editor: Henner Hollert

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bošnjak, I., Lepen Pleić, I., Borra, M. et al. Quantification and in situ localisation of abcb1 and abcc9genes in toxicant-exposed sea urchin embryos. Environ Sci Pollut Res 20, 8600–8611 (2013). https://doi.org/10.1007/s11356-013-1819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1819-2

Keywords

Navigation