Skip to main content
Log in

Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants?

  • Wastewater Reuse Applications and Contaminants of Emerging Concern (WRA & CEC 2012)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water scarcity is one of the most important environmental and public health problems of our century. Treated wastewater reuse seems to be the most attractive option for the enhancement of water resources. However, the lack of uniform guidelines at European and/or Mediterranean level leaves room for application of varying guidelines and regulations, usually not based on risk assessment towards humans and the environment. The benefits of complementing the physicochemical evaluation of wastewater with a biological one are demonstrated in the present study using Cyprus, a country with extended water reuse applications, as an example. Four organisms from different trophic levels were used for the biological assessment of the wastewater, namely, Pseudokirchneriella subcapitata, Daphnia magna, Artemia salina and Vibrio fischeri. The physicochemical assessment of wastewater based on “traditional” chemical parameters indicated that the quality of the wastewater complies with the limits set by the relevant national guidelines for disposal. The ecotoxicological assessment, however, indicated the presence of toxicity throughout the sampling periods and most importantly an increase of the toxicity of the treated wastewater during summer compared to winter. The resulting poor correlation between the physicochemical and biological assessments demonstrates that the two assessments are necessary and should be performed in parallel in order to be able to obtain concrete results on the overall quality of the treated effluent. Moreover, a hazard classification scheme for wastewater is proposed, which can enable the comparison of the data sets of the various parameters deriving from the biological assessment in a comprehensive way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angelakis AN, Durham B (2008) Water recycling and reuse in EUREAU countries: trends and challenges. Desalination. doi:10.1016/j.desal.2006.07.015

    Google Scholar 

  • Angelakis AN, Marecos Do Monte MHF, Bontoux L, Asano T (1999) The status of wastewater reuse practice in the Mediterranean basin: need for guidelines. Water Res. doi:10.1016/S0043-1354(98)00465-5

    Google Scholar 

  • APHA, AWWA, WEF (1998) Standard methods for examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, US

  • Asano T, Cotruvo JA (2004) Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations. Water Res. doi:10.1016/j.watres.2004.01.023

    Google Scholar 

  • Bakopoulou S, Emmanouil C, Kungolos A (2011) Assessment of wastewater effluent quality in Thessaly region, Greece, for determining its irrigation reuse potential. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2010.06.022

    Google Scholar 

  • Bixio D, Thoeye C, De Koning J, Joksimovic D, Savic D, Wintgens T, Melin T (2006) Wastewater reuse in Europe. Desalination. doi:10.1016/j.desal.2005.04.070

    Google Scholar 

  • Boillot C, Bazin C, Tissot-Guerraz F, Droguet J, Perraud M, Cetre JC, Trepo D, Perrodin Y (2008) Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities. Sci Total Environ. doi:10.1016/j.scitotenv.2008.04.037

    Google Scholar 

  • Brenner A (2012) Limitations and challenges of wastewater reuse in Israel. Clean-Soil Air Water. doi:10.1007/978-94-007-2240-8_1

    Google Scholar 

  • Brissaud F (2008) Criteria for water recycling and reuse in the Mediterranean countries. Desalination. doi:10.1016/j.desal.2006.07.016

    Google Scholar 

  • California DHWSS (1975) Wastewater reclamation criteria: an excerpt from the California Administrative code, title 22, division 4, environmental health. Brown, Sons & Ferguson, Glasgow

    Google Scholar 

  • Chapman PM, Bailey H, Canaria E (2000) Toxicity of total dissolved solids associated with two mine effluents to chironomid larvae and early life stages of rainbow trout. Environ Toxicol Chem 19:210–214

    CAS  Google Scholar 

  • Chapman PM (2000) Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environ Toxicol Chem. doi:10.1002/etc.5620190102

    Google Scholar 

  • Cooman K, Gajardo M, Nieto J, Bornhardt C, Vidal G (2003) Tannery wastewater characterization and toxicity effects on Daphnia spp. Environ Toxicol. doi:10.1002/tox.10094

    Google Scholar 

  • Costan G, Bermingham N, Blaise C, Ferard JF (1993) Potential ecotoxic effects probe (PEEP): a novel index to assess and compare the toxic potential of industrial effluents. Environ Toxicol Water Qual. doi:10.1002/tox.2530080202

    Google Scholar 

  • ECETOC (2004) Whole effluent assessment 94

  • EU (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal L 327 , 22/12/2000:1–73

    Google Scholar 

  • Farré M, Martínez E, Hernando MD, Fernández-Alba A, Fritz J, Unruh E, Mihail O, Sakkas V, Morbey A, Albanis T, Brito F, Hansen PD, Barceló D (2006) European ring exercise on water toxicity using different bioluminescence inhibition tests based on Vibrio fischeri, in support to the implementation of the water framework directive. Talanta. doi:10.1016/j.talanta.2005.09.047

    Google Scholar 

  • Farré M, Klöter G, Petrovic M, Alonso MC, de Alda MJL, Barceló D (2002) Identification of toxic compounds in wastewater treatment plants during a field experiment. Anal Chim Acta. doi:10.1016/S0003-2670(01)00908-4

    Google Scholar 

  • Friedler E, Lahav O, Jizhaki H, Lahav T (2006) Study of urban population attitudes towards various wastewater reuse options: Israel as a case study. J Environ Manage. doi:10.1016/j.jenvman.2005.11.013

    Google Scholar 

  • Grant SB, Saphores J, Feldman DL, Hamilton AJ, Fletcher TD, Cook PLM, Stewardson M, Sanders BF, Levin LA, Ambrose RF, Deletic A, Brown R, Jiang SC, Rosso D, Cooper WJ, Marusic I (2012) Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science. doi:10.1126/science.1216852

    Google Scholar 

  • Grothe DR, Dickson KL, Reed-Judkins DK (1996) Whole effluent toxicity testing: an evaluation of methods and prediction of receiving system impacts. Proceedings from a SETAC-sponsored Pellston Workshop. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA

    Google Scholar 

  • Hernando MD, Malato O, Farré M, Fernandez-Alba AR, Barceló D (2006) Application of ring study: water toxicity determinations by bioluminescence assay with Vibrio fischeri. Talanta. doi:10.1016/j.talanta.2005.09.039

    Google Scholar 

  • Holbrook RD, Novak JT, Grizzard TJ, Love NG (2002) Estrogen receptor agonist fate during wastewater and biosolids treatment processes: a mass balance analysis. Environ Sci Technol. doi:10.1021/es020577b

    Google Scholar 

  • Huertas E, Salgot M, Hollender J, Weber S, Dott W, Khan S, Schäfer A, Messalem R, Bis B, Aharoni A, Chikurel H (2008) Key objectives for water reuse concepts. Desalination. doi:10.1016/j.desal.2006.09.032

    Google Scholar 

  • Johnson AC, Williams RJ (2004) A model to estimate influent and effluent concentrations of estradiol, estrone, and ethinylestradiol at sewage treatment works. Environ Sci Technol. doi:10.1021/es035342u

    Google Scholar 

  • López-Serna R, Postigo C, Blanco J, Pérez S, Ginebreda A, López de Alda M, Petrović M, Munné A, Barceló D (2012) Assessing the effects of tertiary treated wastewater reuse on the presence emerging contaminants in a Mediterranean river (Llobregat, NE Spain). Environ Sci Pollut Res. doi:10.1007/s11356-011-0596-z

    Google Scholar 

  • Martin OV, Voulvoulis N (2009) Sustainable risk management of emerging contaminants in municipal wastewaters. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi:10.1098/rsta.2009.0115

    Google Scholar 

  • Mendonça E, Picado A, Paixão SM, Silva L, Cunha MA, Leitão S, Moura I, Cortez C, Brito F (2009) Ecotoxicity tests in the environmental analysis of wastewater treatment plants: case study in Portugal. J Hazard Mater. doi:10.1016/j.jhazmat.2008.07.012

    Google Scholar 

  • Mount DI (1998) Midcourse corrections in WET testing program. Soc Environ Toxicol Chem News 18:19–20

    Google Scholar 

  • Muñoz I, Rodríguez A, Rosal R, Fernández-Alba AR (2009) Life cycle assessment of urban wastewater reuse with ozonation as tertiary treatment: a focus on toxicity-related impacts. Sci Total Environ. doi:10.1016/j.scitotenv.2008.09.029

    Google Scholar 

  • Naddeo V, Belgiorno V, Kassinos D, Mantzavinos D, Meriç S (2010) Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters. Ultrason Sonochem. doi:10.1016/j.ultsonch.2009.04.003

    Google Scholar 

  • Naddeo V, Meriç S, Kassinos D, Belgiorno V, Guida M (2009) Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Res. doi:10.1016/j.watres.2009.05.027

    Google Scholar 

  • Norberg-King T (1993) A linear interpolation method for sublethal toxicity: The inhibition concentration (lCp) approach (Version 2.0). National Toxicity Assessment Center. Technical Report 03–93. U.S. Environmental Protection Agency, Duluth, MN

  • OECD (2011) Test No. 201: freshwater alga and cyanobacteria, growth inhibition test. Organisation for Economic Co-operation and Development

  • OECD (2004) Test No. 202: Daphnia sp. acute immobilisation test. Organisation for Economic Co-operation and Development

  • Parrott JL, Blunt BR (2005) Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males. Environ Toxicol. doi:10.1002/tox.20087

    Google Scholar 

  • Persoone G, Marsalek B, Blinova I, Törökne A, Zarina D, Manusadzianas L, Nalecz-Jawecki G, Tofan L, Stepanova N, Tothova L, Kolar B (2003) A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ Toxicol. doi:10.1002/tox.10141

    Google Scholar 

  • Postma JF, De Valk S, Dubbeldam M, Maas JL, Tonkes M, Schipper CA, Kater BJ (2002) Confounding factors in bioassays with freshwater and marine organisms. Ecotoxicol Environ Saf. doi:10.1006/eesa.2002.2195

    Google Scholar 

  • Power E, Boumphrey R (2004) International trends in bioassay use for effluent management. Ecotoxicology. doi:10.1023/B:ECTX.0000035290.89590.03

    Google Scholar 

  • Ra J, Kim H, Chang N, Kim S (2007) Whole effluent toxicity (WET) tests on wastewater treatment plants with Daphnia magna and Selenastrum capricornutum. Environ Monit Assess. doi:10.1007/s10661-006-9431-2

    Google Scholar 

  • Rizzo L, Meriç S, Guida M, Kassinos D, Belgiorno V (2009a) Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. doi:10.1016/j.watres.2009.06.046

    Google Scholar 

  • Rizzo L, Meriç S, Kassinos D, Guida M, Russo F, Belgiorno V (2009b) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. doi:10.1016/j.watres.2008.11.040

    Google Scholar 

  • Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem. doi:10.1002/etc.5620150303

    Google Scholar 

  • Schilirò T, Pignata C, Rovere R, Fea E, Gilli G (2009) The endocrine disrupting activity of surface waters and of wastewater treatment plant effluents in relation to chlorination. Chemosphere. doi:10.1016/j.chemosphere.2008.12.028

    Google Scholar 

  • Teodorović I, Bečelić M, Planojević I, Ivančev-Tumbas I, Dalmacija B (2009) The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment in Vojvodina (Serbia). Environ Monit Assess. doi:10.1007/s10661-008-0591-0

    Google Scholar 

  • Torres-Guzmán F, Avelar-González FJ, Rico-Martínez R (2010) An assessment of chemical and physical parameters, several contaminants including metals, and toxicity in the seven major wastewater treatment plants in the state of Aguascalientes. Mexico. J Environ Sci Health A Tox Hazard Subst Environ Eng. doi:10.1080/10934520903388517

    Google Scholar 

  • USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. U.S. Environmental Protection Agency, Office of Water, Washington, DC

  • USEPA (1999a) Update of ambient water quality criteria for ammonia. EPA-822-R-99-014:1–153

  • USEPA (1999b) Toxicity reduction evaluation guidance for municipal wastewater treatment plants. EPA/833B-99/002:1–83

  • USEPA (1991) Technical support document for water quality-based toxics control. EPA/505/2–90001

  • WHO (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. Report of a WHO Scientific Group. World Health Organ Tech Rep Ser

  • Wu Q, Hu H, Zhao X, Sun Y (2009) Effect of chlorination on the estrogenic/antiestrogenic activities of biologically treated wastewater. Environ Sci Technol. doi:10.1021/es8034329

    Google Scholar 

  • Yi X, Kim E, Jo H, Schlenk D, Jung J (2009) A toxicity monitoring study on identification and reduction of toxicants from a wastewater treatment plant. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2009.04.012

    Google Scholar 

  • Žegura B, Heath E, Černoša A, Filipič M (2009) Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere. doi:10.1016/j.chemosphere.2009.02.041

    Google Scholar 

Download references

Acknowledgments

The personnel of the collaborating Sewerage Boards and Sewage Treatment Plants are warmly thanked for providing all the information needed. This work was prepared in the framework of the PENEK/0609/24 research project “Development of novel methods for the toxicity assessment of the multi-component chemical mixtures to humans and the ecosystem (TOMIXX)”, implemented within the framework of the program for research, technological development and innovation “DESMH 2009-2010” and stimulated by the activities of NIREAS, the International Water Research Center of the University of Cyprus (ΝΕΑ ΥΠΟΔΟΜΗ/ΣΤΡΑΤΗ/0308/09). Both projects are co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fatta-Kassinos.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 28.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasquez, M.I., Fatta-Kassinos, D. Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants?. Environ Sci Pollut Res 20, 3516–3528 (2013). https://doi.org/10.1007/s11356-013-1637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1637-6

Keywords

Navigation