Skip to main content

Advertisement

Log in

Effects of chronic exposure to radiofrequency electromagnetic fields on energy balance in developing rats

  • Ecotoxicology and Environmental Toxicology : new concepts, new tools
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The effects of radiofrequency electromagnetic fields (RF-EMF) on the control of body energy balance in developing organisms have not been studied, despite the involvement of energy status in vital physiological functions. We examined the effects of chronic RF-EMF exposure (900 MHz, 1 V m−1) on the main functions involved in body energy homeostasis (feeding behaviour, sleep and thermoregulatory processes). Thirteen juvenile male Wistar rats were exposed to continuous RF-EMF for 5 weeks at 24 °C of air temperature (T a) and compared with 11 non-exposed animals. Hence, at the beginning of the 6th week of exposure, the functions were recorded at T a of 24 °C and then at 31 °C. We showed that the frequency of rapid eye movement sleep episodes was greater in the RF-EMF-exposed group, independently of T a (+42.1 % at 24 °C and +31.6 % at 31 °C). The other effects of RF-EMF exposure on several sleep parameters were dependent on T a. At 31 °C, RF-EMF-exposed animals had a significantly lower subcutaneous tail temperature (−1.21 °C) than controls at all sleep stages; this suggested peripheral vasoconstriction, which was confirmed in an experiment with the vasodilatator prazosin. Exposure to RF-EMF also increased daytime food intake (+0.22 g h−1). Most of the observed effects of RF-EMF exposure were dependent on T a. Exposure to RF-EMF appears to modify the functioning of vasomotor tone by acting peripherally through α-adrenoceptors. The elicited vasoconstriction may restrict body cooling, whereas energy intake increases. Our results show that RF-EMF exposure can induce energy-saving processes without strongly disturbing the overall sleep pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adair ER, Adams BW (1980) Microwaves modify thermoregulatory behavior in squirrel monkey. Bioelectromagnetics 1:1–20

    Article  CAS  Google Scholar 

  • Adair ER, Adams BW (1983) Behavioral thermoregulation in the squirrel monkey: adaptation processes during prolonged microwave exposure. Behav Neurosci 97:49–61

    Article  CAS  Google Scholar 

  • Adair ER, Adams BW, Akel GM (1984) Minimal changes in hypothalamic temperature accompany microwave-induced alteration of thermoregulatory behavior. Bioelectromagnetics 5:13–30

    Article  CAS  Google Scholar 

  • Angelone LM, Bit-Babik G, Chou CK (2010) Computational electromagnetic analysis in a human head model with EEG electrodes and leads exposed to RF-field sources at 915 MHz and 1748 MHz. Radiat Res 174:91–100

    Article  CAS  Google Scholar 

  • Angelone LM, Potthast A, Segonne F, Iwaki S, Belliveau JW, Bonmassar G (2004) Metallic electrodes and leads in simultaneous EEG-MRI: specific absorption rate (SAR) simulation studies. Bioelectromagnetics 25:285–295

    Article  Google Scholar 

  • Bjorvatn B, Fagerland S, Ursin R (1998) EEG power densities (0.5–20 Hz) in different sleep–wake stages in rats. Physiol Behav 63:413–417

    Article  CAS  Google Scholar 

  • Blessing WW (2003) Lower brainstem pathways regulating sympathetically mediated changes in cutaneous blood flow. Cell Mol Neurobiol 23:527–538

    Article  CAS  Google Scholar 

  • Bolomey J-C, Bucci OM, Casavola L, D’Elia G, Migliore MD, Ziyyat A (2004) Reduction of truncation error in near-field measurements of antennas of base-station mobile communication systems. IEEE Trans Antennas Propag 52:593–602

    Article  Google Scholar 

  • Borbély AA, Huber R, Graf T, Fuchs B, Gallmann E, Achermann P (1999) Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram. Neurosci Lett 275:207–210

    Article  Google Scholar 

  • Cajochen C, Knoblauch V, Krauchi K, Renz C, Wirz-Justice A (2001) Dynamics of frontal EEG activity, sleepiness and body temperature under high and low sleep pressure. Neuroreport 12:2277–2281

    Article  CAS  Google Scholar 

  • Crouzier D, Debouzy JC, Bourbon F, Collin A, Perrin A, Testylier G (2007a) Neurophysiologic effects at low level 1.8 GHz radiofrequency field exposure: a multiparametric approach on freely moving rats. Pathol Biol (Paris) 55:134–142

    Article  CAS  Google Scholar 

  • Crouzier D, Testylier G, Perrin A, Debouzy JC (2007b) Quels effets neurophysiologiques pour un champ électromagnétique de faible puissance à 2,45 GHz? Pathol Biol (Paris) 55:235–241

    Article  CAS  Google Scholar 

  • Danguir J, Nicolaidis S (1980) Circadian sleep and feeding patterns in the rat: possible dependence on lipogenesis and lipolysis. Am J Physiol 238:E223–E230

    CAS  Google Scholar 

  • Danguir J, Nicolaidis S (1985) Feeding, metabolism and sleep. Peripheral and central mechanisms of their interaction. In: McGintry DJ, Morrison A, Parmeggiani PL (eds) Brain mechanism of sleep. Raven, New York, pp 321–340

    Google Scholar 

  • Dawson NJ, Keber AW (1979) Physiology of heat loss from an extremity: the tail of the rat. Clin Exp Pharmacol Physiol 6:69–80

    Article  CAS  Google Scholar 

  • De Vries J, Strubbe JH, Wildering WC, Gorter JA, Prins AJ (1993) Patterns of body temperature during feeding in rats under varying ambient temperatures. Physiol Behav 53:229–235

    Article  Google Scholar 

  • Durney CH, Massoudi H and Iskander MF (1986) Radiofrequency radiation dosimetry handbook, 4th edition. Texas, USAFSAM-TR-85-73, Brooks Air Force Base

  • El Hajjaji FZ, Pelletier A, Delanaud S, Libert JP, Bach V, Loos N (2011) Sleep structure and feeding pattern changes induced by the liver's thermal status in the rat. J Sleep Res. doi:10.1111/j.1365-2869.2011

  • Gao BO, Franken P, Tobler I, Borbely AA (1995) Effect of elevated ambient temperature on sleep, EEG spectra, and brain temperature in the rat. Am J Physiol 268:1365–1373

    Google Scholar 

  • Gautier H (2000) Body temperature regulation in the rat. J Therm Biol 25:273–279

    Article  Google Scholar 

  • Hamblin DL, Anderson V, McIntosh RL, McKenzie RJ, Wood AW, Iskra S, Croft RJ (2007) EEG electrode caps can reduce SAR induced in the head by GSM900 mobile phones. IEEE Trans Biomed Eng 54:914–920

    Article  Google Scholar 

  • Himms-Hagen J (1995) Role of brown adipose tissue thermogenesis in control of thermoregulatory feeding in rats: a new hypothesis that links thermostatic and glucostatic hypotheses for control of food intake. Proc Soc Exp Biol Med 208:159–169

    CAS  Google Scholar 

  • Horne J (1988) Why we sleep? The functions of sleep in humans and other mammals. Oxford University Press, Oxford

    Google Scholar 

  • ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields. Health Phys 74:494–522

    Google Scholar 

  • Inoue M, McHugh M, Pappius HM (1991) The effect of alpha-adrenergic receptor blockers prazosin and yohimbine on cerebral metabolism and biogenic amine content of traumatized brain. J Cereb Blood Flow Metab 11:242–252

    Article  CAS  Google Scholar 

  • Ishiwata T, Hasegawa H, Yasumatsu M, Akano F, Yazawa T, Otokawa M, Aihara Y (2001) The role of preoptic area and anterior hypothalamus and median raphe nucleus on thermoregulatory system in freely moving rats. Neurosci Lett 306:126–128

    Article  CAS  Google Scholar 

  • John J, Kumar VM, Gopinath G, Ramesh V, Mallick H (1994) Changes in sleep-wakefulness after kainic acid lesion of the preoptic area in rats. Jpn J Physiol 44:231–242

    Article  CAS  Google Scholar 

  • Kumar D, Mallick HN, Kumar VM (2009) Ambient temperature that induces maximum sleep in rats. Physiol Behav 98:186–191

    Article  CAS  Google Scholar 

  • Langer SZ (1974) Presynaptic regulation of catecholamine release. Biochem Pharmacol 23:1793–1800

    Article  CAS  Google Scholar 

  • Larson BT, Samford MD, Turner JT, Kerley MS, Paterson JA (1996) Effects of endophyte-infected tall fescue, environmental temperature and prazosin injection on the rat. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 114:39–44

    Article  CAS  Google Scholar 

  • Libert JP, Candas V, Muzet A, Ehrhart J (1982) Thermoregulatory adjustments to thermal transients during slow wave sleep and REM sleep in man. J Physiol (Paris) 78:251–257

    CAS  Google Scholar 

  • Mann K, Roschke J (1996) Effects of pulsed high-frequency electromagnetic fields on human sleep. Neuropsychobiology 33:41–47

    Article  CAS  Google Scholar 

  • Mitchell CL, McRee DI, Peterson NJ, Tilson HA, Shandala MG, Rudnev MI, Varetskii VV, Navakatikyan MI (1989) Results of a United States and Soviet Union joint project on nervous system effects of microwave radiation. Environ Health Perspect 81:201–209

    CAS  Google Scholar 

  • Parmeggiani PL (1968) Telencephalo-diencephalic aspects of sleep mechanisms. Brain Res 7:350–359

    Article  CAS  Google Scholar 

  • Parmeggiani PL (1977) Thermoregulation during sleep. Riv Neurol 47:485–491

    CAS  Google Scholar 

  • Roberts M, Rivers T, Oliveria S, Texeira P, Raman E (2002) Adrenoceptor and local modulator control of cutaneous blood flow in thermal stress. Comp Biochem Physiol A Mol Integr Physiol 131:485–496

    Article  Google Scholar 

  • Romanovsky AA, Ivanov AI, Shimansky YP (2002) Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92:2667–2679

    Google Scholar 

  • Sapsed-Byrne S, Holdcroft A, Ridout D (1995) The influence of colonic temperature changes in anaesthetised rats on tail skin temperatures and repeated testing of tail-flick latencies. Pain 63:255–261

    Article  CAS  Google Scholar 

  • Schmid G, Cecil S, Goger C, Trimmel M, Kuster N, Molla-Djafari H (2007) New head exposure system for use in human provocation studies with EEG recording during GSM900- and UMTS-like exposure. Bioelectromagnetics 28:636–647

    Article  Google Scholar 

  • Strubbe JH, Spiteri NJ, Alingh Prins AJ (1986) Effect of skeleton photoperiod and food availability on the circadian pattern of feeding and drinking in rats. Physiol Behav 36:647–651

    Article  CAS  Google Scholar 

  • Strubbe JH, van Dijk G (2002) The temporal organization of ingestive behaviour and its interaction with regulation of energy balance. Neurosci Biobehav Rev 26:485–498

    Article  Google Scholar 

  • Szymusiak R, Satinoff E (1981) Maximal REM sleep time defines a narrower thermoneutral zone than does minimal metabolic rate. Physiol Behav 26:687–690

    Article  CAS  Google Scholar 

  • Thuroczy G, Kubinyi G, Bodo M, Bakos J, Szabo LD (1994) Simultaneous response of brain electrical activity (EEG) and cerebral circulation (REG) to microwave exposure in rats. Rev Environ Health 10:135–148

    Article  CAS  Google Scholar 

  • Valentini E, Curcio G, Moroni F, Ferrara M, De Gennaro L, Bertini M (2007) Neurophysiological effects of mobile phone electromagnetic fields on humans: a comprehensive review. Bioelectromagnetics 28:415–432

    Article  CAS  Google Scholar 

  • Vorobyov VV, Galchenko AA, Kukushkin NI, Akoev IG (1997) Effects of weak microwave fields amplitude modulated at ELF on EEG of symmetric brain areas in rats. Bioelectromagnetics 18:293–298

    Article  CAS  Google Scholar 

  • Vyazovskiy VV, Achermann P, Tobler I (2007) Sleep homeostasis in the rat in the light and dark period. Brain Res Bull 74:37–44

    Article  CAS  Google Scholar 

  • Young AA, Dawson NJ (1982) Evidence for on-off control of heat dissipation from the tail of the rat. Can J Physiol Pharmacol 60:392–398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the French Ministry of Research and a “Post-Grenelle” from the French Ministry of Ecology, as part of the “Pôle applicatif en Toxicologie et Ecotoxicologie” programme coordinated by the French National Institute of Environment and Industrial Risks (INERIS). We thank Patrice Cagnon for his technical assistance with RF-EMF dosimetry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Loos.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelletier, A., Delanaud, S., Décima, P. et al. Effects of chronic exposure to radiofrequency electromagnetic fields on energy balance in developing rats. Environ Sci Pollut Res 20, 2735–2746 (2013). https://doi.org/10.1007/s11356-012-1266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1266-5

Keywords

Navigation