Skip to main content

Advertisement

Log in

In vivo exposure of Mytilus edulis to living enteric bacteria: a threat for immune competency?

  • Ecotoxicology of estuaries in France and Québec, Canada
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mussels are widespread in coastal environments and experience various physical, chemical, and bacteriological conditions. Owing to the increase of coastal urbanization, mussels are now commonly exposed not only to indigenous bacteria, but also to enteric bacteria originating from pulsed and chronic sewage discharges into coastal environments. Due to its broad resilience to environmental variations, the blue mussel Mytilus edulis is commonly used as an indicator of environmental quality in bio-monitoring programs. However, since mussel immune system capabilities may be affected by the presence of exogenous fecal bacteria in coastal seawater subjected to sewage discharges, we aimed to determine the effect of in vivo bacterial challenges on mussels' immune competency by using two exogenous enteric bacterial strains, Escherichia coli and Enterococcus faecalis, and an indigenous bacterial strain Vibrio splendidus (as control). Bacterial strains were tested individually, by injection into the posterior adductor muscle at three different cell densities (102, 103, and 104 cells). Unlike classic in vitro experiments using higher bacterial concentrations, neither the enteric bacteria nor the indigenous strain induced significant increase or decrease of either cell-mediated (phagocytosis, reactive oxygen species, and NO x production) or humoral components (prophenoloxidase-like, acid phosphatase, and l-leucine-aminopeptidase production) of the immune system. This study demonstrates that, at low concentrations, E. coli and E. faecalis do not represent an additional threat that could impair M. edulis immune competency and, as a consequence, its potential of survival in coastal areas subjected to sewage discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaishi FM, St-Jean SD, Bishay F, Clarke J, IdS R, de Oliveira Ribeiro CA (2007) Immunological responses, histopathological finding and disease resistance of blue mussel (Mytilus edulis) exposed to treated and untreated municipal wastewater. Aquat Toxicol 82:1–14. doi:10.1016/j.aquatox.2007.01.008

    Article  CAS  Google Scholar 

  • Andersch MA, Szczypinski AJ (1947) Use of p-nitrophenylphosphate as the substrate in determination of serum acid phosphatase. Am J Clin Pathol 17:571–574

    CAS  Google Scholar 

  • Anonymous (2012) Aquaculture Canada: facts and figures. http://www.dfo-mpo.gc.ca/aquaculture/ref/stats/aqua-ff-fc-2009-eng.htm. Accessed 21 March 2012

  • Araya MT, Markham F, Mateo DR, McKenna P, Johnson GR, Berthe FCJ, Siah A (2010) Identification and expression of immune-related genes in hemocytes of soft-shell clams, Mya arenaria, challenged with Vibrio splendidus. Fish Shellfish Immunol 29:557–564. doi:10.1016/j.fsi.2010.05.017

    Article  CAS  Google Scholar 

  • Asokan R, Arumugam M, Mullainadhan P (1997) Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Perna viridis Linnaeus. Dev Comp Immunol 21:1–12. doi:10.1016/s0145-305x(97)00004-9

    Article  CAS  Google Scholar 

  • Auffret M, Rousseau S, Boutet I, Tanguy A, Baron J, Moraga D, Duchemin M (2006) A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranean. Ecotoxicol Environ Saf 63:393–405. doi:10.1016/j.ecoenv.2005.10.016

    Article  CAS  Google Scholar 

  • Bao Y, Wang Q, Liu H, Lin Z (2011) A small HSP gene of bloody clam (Tegillarca granosa) involved in the immune response against Vibrio parahaemolyticus and lipopolysaccharide. Fish Shellfish Immunol 30:729–733. doi:10.1016/j.fsi.2010.12.002

    Article  CAS  Google Scholar 

  • Beutler B (2004) Innate immunity: an overview. Mol Immunol 40:845–859. doi:10.1016/j.molimm.2003.10.005

    Article  CAS  Google Scholar 

  • Birkbeck TH, McHenery JG (1982) Degradation of bacteria by Mytilus edulis. Mar Biol 72:7–15. doi:10.1007/bf00393942

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bussell JA, Gidman EA, Causton DR, Gwynn-Jones D, Malham SK, Jones MLM, Reynolds B, Seed R (2008) Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. J Exp Mar Biol Ecol 358:78–85. doi:10.1016/j.jembe.2008.01.018

    Article  Google Scholar 

  • Canesi L, Gallo G, Gavioli M, Pruzzo C (2002) Bacteria–hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech 57:469–476. doi:10.1002/jemt.10100

    Article  Google Scholar 

  • Cavallo RA, Stabili L (2002) Presences of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res 36:3719–3726. doi:10.1016/S0043-1354(02)00107-0

    Article  CAS  Google Scholar 

  • Cheng TC (1992) Selective induction of release of hydrolases from Crassostrea virginica hemocytes by certain bacteria. J Invertebr Pathol 59:197–200. doi:10.1016/0022-2011(92)90033-z

    Article  CAS  Google Scholar 

  • Chu F-LE (1988) Humoral defense factors in marine bivalves. In: Fisher WS (ed) Disease processes in marine bivalve molluscs. Fisheries Society special publication, Bethesda, pp 178–188

    Google Scholar 

  • Ciacci C, Citterio B, Betti M, Canonico B, Roch P, Canesi L (2009) Functional differential immune responses of Mytilus galloprovincialis to bacterial challenge. Comp Biochem Physiol B Biochem Mol Biol 153:365–371. doi:10.1016/j.cbpb.2009.04.007

    Article  Google Scholar 

  • Coles JA, Pipe RK (1994) Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis. Fish Shellfish Immunol 4:337–352. doi:10.1006/fsim.1994.1030

    Article  Google Scholar 

  • Costa MM, Prado-Alvarez M, Gestal C, Li H, Roch P, Novoa B, Figueras A (2009) Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) haemocytes against pathogen-associated molecular patterns and bacteria. Fish Shellfish Immunol 26:515–523. doi:10.1016/j.fsi.2009.02.001

    Article  CAS  Google Scholar 

  • De Decker S, Saulnier D (2011) Vibriosis induced by experimental cohabitation in Crassostrea gigas: evidence of early infection and down-expression of immune-related genes. Fish Shellfish Immunol 30:691–699. doi:10.1016/j.fsi.2010.12.017

    Article  Google Scholar 

  • Delaporte M, Soudant P, Lambert C, Jegaden M, Moal J, Pouvreau S, Dégremont L, Boudry P, Samain J-F (2007) Characterisation of physiological and immunological differences between Pacific oysters (Crassostrea gigas) genetically selected for high or low survival to summer mortalities and fed different rations under controlled conditions. J Exp Mar Biol Ecol 353:45–57. doi:10.1016/j.jembe.2007.09.003

    Article  Google Scholar 

  • Donaghy L, Volety AK (2011) Functional and metabolic characterization of hemocytes of the green mussel, Perna viridis: in vitro impacts of temperature. Fish Shellfish Immunol 31:808–814. doi:10.1016/j.fsi.2011.07.018

    CAS  Google Scholar 

  • Duchemin MB, Auffret M, Wessel N, Fortier M, Morin Y, Pellerin J, Fournier M (2008) Multiple experimental approaches of immunotoxic effects of mercury chloride in the blue mussel, Mytilus edulis, through in vivo, in tubo and in vitro exposures. Environ Pollut 153:416–423. doi:10.1016/j.envpol.2007.08.015

    Article  CAS  Google Scholar 

  • Feng SY (1988) Cellular defense mechanisms of oysters and mussels. In: Fisher WS (ed) Disease processes in marine bivalve molluscs. Fisheries Society Special Publication, Bethesda, pp 153–168

    Google Scholar 

  • Frischer ME, Nierzwicki-Bauer SA, Parsons RH, Vathanodorn K, Waitkus KR (2000) Interactions between zebra mussels (Dreissena polymorpha) and microbial communities. Can J Fish Aquat Sci 57:591–599. doi:10.1139/f00-001

    Article  Google Scholar 

  • Gagnaire B, Gay M, Huvet A, Daniel J-Y, Saulnier D, Renault T (2007) Combination of a pesticide exposure and a bacterial challenge: in vivo effects on immune response of Pacific oyster, Crassostrea gigas (Thunberg). Aquat Toxicol 84:92–102. doi:10.1016/j.aquatox.2007.06.002

    Article  CAS  Google Scholar 

  • Girard M, Roussy M, Coulombe F, Cauvier C, Moisan N (2008) Optimisation des opérations de dépuration en vrac des moules bleues de la baie de Gaspé par la réduction des débits de l’eau de mer à basse température, vol 169. MAPAQ, Quebec

    Google Scholar 

  • Goedken M, Morsey B, Sunila I, Dungan C, De Guise S (2005) The effects of temperature and salinity on apoptosis of Crassostrea virginica hemocytes and Perkinsus marinus. J Shellfish Res 24:177–183. doi:10.2983/0730-8000(2005)24[177:teotas]2.0.co;2

    Google Scholar 

  • Jacquet S, Lennon J-F, Marie D, Vaulot D (1998) Picoplankton population dynamics in coastal waters of the Northwestern Mediterranean Sea. Limnol Oceanogr 43:1916–1931

    CAS  Google Scholar 

  • Kuchel RP, Raftos DA, Nair S (2010) Immunosuppressive effects of environmental stressors on immunological function in Pinctada imbricata. Fish Shellfish Immunol 29:930–936. doi:10.1016/j.fsi.2010.07.033

    Article  Google Scholar 

  • Labreuche Y, Lambert C, Soudant P, Boulo V, Huvet A, Nicolas J-L (2006) Cellular and molecular hemocyte responses of the Pacific oyster, Crassostrea gigas, following bacterial infection with Vibrio aestuarianus strain 01/32. Microbes Infect 8:2715–2724. doi:10.1016/j.micinf.2006.07.020

    Article  CAS  Google Scholar 

  • Lacoste A, Malham SK, Gélébart F, Cueff A, Poulet SA (2002) Stress-induced immune changes in the oyster Crassostrea gigas. Dev Comp Immunol 26:1–9. doi:10.1016/s0145-305x(01)00067-2

    Article  CAS  Google Scholar 

  • Lambert C, Soudant P, Choquet G, Paillard C (2003) Measurement of Crassostrea gigas hemocyte oxidative metabolism by flow cytometry and the inhibiting capacity of pathogenic vibrios. Fish Shellfish Immunol 15:225–240. doi:10.1016/s1050-4648(02)00160-2

    Article  CAS  Google Scholar 

  • Lane E, Birkbeck TH (2000) Species specificity of some bacterial pathogens of bivalve molluscs is correlated with their interaction with bivalve haemocytes. J Fish Dis 23:275–279. doi:10.1046/j.1365-2761.2000.00224.x

    Article  Google Scholar 

  • Lebaron P, Servais P, Baudoux A-C, Bourrain M, Courties C, Parthuisot N (2002) Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry. Aquat Microb Ecol 28:131–140. doi:10.3354/ame028131

    Article  Google Scholar 

  • Lemaire N, Pellerin J, Fournier M, Girault L, Tamigneaux E, Cartier S, Pelletier E (2006) Seasonal variations of physiological parameters in the blue mussel Mytilus spp. from farm sites of eastern Quebec. Aquaculture 261:729–751. doi:10.1016/j.aquaculture.2006.08.017

    Article  Google Scholar 

  • MdM L, Signoretto C, Canepari P (2005) Gram-positive bacteria in the marine environment. In: Belkin S, Colwell RR (eds) Oceans and health: pathogens in the marine environment. Springer, USA, pp 307–330

    Google Scholar 

  • Lucena F, Lasobras J, McIntosh D, Forcadell M, Jofre J (1994) Effect of distance from the polluting focus on relative concentrations of Bacteroides fragilis phages and coliphages in mussels. Appl Environ Microbiol 60:2272–2277

    CAS  Google Scholar 

  • Malagoli D, Casarini L, Orraviani E (2007) Monitoring of the immune efficiency of Mytilus galloprovincialis in Adriatic sea mussel farms in 2006: regular changes in cytotoxicity during the year. Invertebr Surviv J 4:10–12

    Google Scholar 

  • Marino A, Lombardo L, Fiorentino C, Orlandella B, Monticelli L, Nostro A, Alonzo V (2005) Uptake of Escherichia coli, Vibrio cholerae non-O1 and Enterococcus durans by, and depuration of mussels (Mytilus galloprovincialis). Int J Food Microbiol 99:281–286. doi:10.1016/j.ijfoodmicro.2004.09.003

    Article  Google Scholar 

  • Mateo DR, Siah A, Araya MT, Berthe FCJ, Johnson GR, Greenwood SJ (2009) Differential in vivo response of soft-shell clam hemocytes against two strains of Vibrio splendidus: changes in cell structure, numbers and adherence. J Invertebr Pathol 102:50–56. doi:10.1016/j.jip.2009.06.008

    Article  Google Scholar 

  • Munari M, Matozzo V, Marin MG (2011) Combined effects of temperature and salinity on functional responses of haemocytes and survival in air of the clam Ruditapes philippinarum. Fish Shellfish Immunol 30:1024–1030. doi:10.1016/j.fsi.2011.01.025

    Article  Google Scholar 

  • Parisi M-G, Li H, Jouvet LBP, Dyrynda EA, Parrinello N, Cammarata M, Roch P (2008) Differential involvement of mussel hemocyte sub-populations in the clearance of bacteria. Fish Shellfish Immunol 25:834–840. doi:10.1016/j.fsi.2008.09.005

    Article  CAS  Google Scholar 

  • Pipe RK (1992) Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Dev Comp Immunol 16:111–122. doi:10.1016/0145-305x(92)90012-2

    Article  CAS  Google Scholar 

  • Prato E, Danieli A, Maffia M, Biandolino F (2010) Lipid and fatty acid compositions of Mytilus galloprovincialis cultured in the Mar Grande of Taranto (Southern Italy): feeding strategies and trophic relationships. Zool Stud 49:211–219

    CAS  Google Scholar 

  • Pruzzo C, Gallo G, Canesi L (2005) Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environ Microbiol 7:761–772. doi:10.1111/j.1462-2920.2005.00792.x

    Article  Google Scholar 

  • Roslev P, Iversen L, Sonderbo HL, Iversen N, Bastholm S (2009) Uptake and persistence of human associated Enterococcus in the mussel Mytilus edulis: relevance for faecal pollution source tracking. J Appl Microbiol 107:944–953. doi:10.1111/j.1365-2672.2009.04272.x

    Article  CAS  Google Scholar 

  • Samain JF, Dégremont L, Soletchnik P, Haure J, Bédier E, Ropert M, Moal J, Huvet A, Bacca H, Van Wormhoudt A, Delaporte M, Costil K, Pouvreau S, Lambert C, Boulo V, Soudant P, Nicolas JL, Le Roux F, Renault T, Gagnaire B, Geret F, Boutet I, Burgeot T, Boudry P (2007) Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268:227–243. doi:10.1016/j.aquaculture.2007.04.044

    Article  Google Scholar 

  • Saulnier D, De Decker S, Haffner P, Cobret L, Robert M, Garcia C (2010) A large-scale epidemiological study to identify bacteria pathogenic to Pacific oyster Crassostrea gigas and correlation between virulence and metalloprotease-like activity. Microb Ecol 59:787–798. doi:10.1007/s00248-009-9620-y

    Article  Google Scholar 

  • Travers M-A, Le Goïc N, Huchette S, Koken M, Paillard C (2008) Summer immune depression associated with increased susceptibility of the European abalone, Haliotis tuberculata to Vibrio harveyi infection. Fish Shellfish Immunol 25:800–808. doi:10.1016/j.fsi.2008.08.003

    Article  CAS  Google Scholar 

  • Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287

    Article  CAS  Google Scholar 

  • Winters AD, Marsh TL, Faisal M (2011) Heterogeneity of bacterial communities within the zebra mussel (Dreissena polymorpha) in the Laurentian Great Lakes Basin. J Great Lakes Res 37:318–324. doi:10.1016/j.jglr.2011.01.010

    Article  Google Scholar 

  • Wootton EC, Dyrynda EA, Pipe RK, Ratcliffe NA (2003) Comparisons of PAH-induced immunomodulation in three bivalve molluscs. Aquat Toxicol 65:13–25. doi:10.1016/s0166-445x(03)00098-5

    Article  CAS  Google Scholar 

  • Wright AC, Hill RT, Johnson JA, Roghman MC, Colwell RR, Morris JG (1996) Distribution of Vibrio vulnificus in the Chesapeake Bay. Appl Environ Microbiol 62:717–724

    CAS  Google Scholar 

  • Yu JH, Song JH, Choi MC, Park SW (2009) Effects of water temperature change on immune function in surf clams, Mactra veneriformis (Bivalvia: Mactridae). J Invertebr Pathol 102:30–35. doi:10.1016/j.jip.2009.06.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ahmed Siah and Dante Mateo from the Department of Pathology and Microbiology of the Atlantic Veterinary College of PEI University for providing us the bacterial strain V. splendidus 7SHRW. Thanks are addressed to Marie-Gil Fortin and Bertrand Genard for their technical support. This study was supported by grants from the Natural Sciences and Engineering Research Council of Canada, Strategic Projects to M. Fournier, and the Société de Développement de l’Industrie Maricole du Québec. Isabelle Boily received ISMER and Réseau Aquaculture Québec supports during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Lemarchand.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier-Clerc, S., Boily, I., Fournier, M. et al. In vivo exposure of Mytilus edulis to living enteric bacteria: a threat for immune competency?. Environ Sci Pollut Res 20, 612–620 (2013). https://doi.org/10.1007/s11356-012-1200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1200-x

Keywords

Navigation