Skip to main content

Advertisement

Log in

Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21–23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m3) as compared to that during the non-smoke haze period (27.0 μg/m3). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abas MRB, Rahman AN, Omar NYMJ, Maah MJ, Samah AA, Oros DR, Otto A, Simoneitc BRT (2004) Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmos Environ 38:4223–4241

    Article  Google Scholar 

  • Balasubramanian R, Victor T, Begum R (1999) Impact of biomass burning on rainwater acidity and composition in Singapore. J Geophys Res 104(26):881–890

    Google Scholar 

  • Balasubramanian R, Qian WB, Decesari S, Facchini MC, Fuzzi S (2003) Comprehensive characterization of PM2.5 aerosols in Singapore. J Geophys Res 108:4523

    Article  Google Scholar 

  • Billet S, Garc-ona G, Daghera Z, Verdina A, Ledouxb FR, Cazierc F, Courcotb D, Antoine A, Shiralia P (2007) Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549). Environ Res 105:212–223

    Article  CAS  Google Scholar 

  • Billet S, Abbas I, Le Goff J, Verdin A, Andre V, Lafargue PE, Hachimi A, Fabrice C, Sichel F, Shirali P, Garcon G (2008) Genotoxic potential of polycyclic aromatic hydrocarbons-coated onto airborne particulate matter (PM2.5) in human lung epithelial A549 cells. Cancer Lett 270:144–155

    Article  CAS  Google Scholar 

  • Bonetta S, Gianotti V, Bonetta S, Gosetti F, Oddone M, Gennaro MC, Carraro E (2009) DNA damage in A549 cells exposed to different extracts of PM2.5 from industrial, urban and highway sites. Chemosphere 77:1030–1034

    Article  CAS  Google Scholar 

  • Broker LE, Kruyt FAE, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11(9):3155–3162

    Article  Google Scholar 

  • Castorena-Torres F, Mario de Leon BD, Cisneros B, Zapata-Perez O, Juan E, Salinas JE, Albores A (2008) Changes in gene expression induced by polycyclic aromatic hydrocarbons in the human cell lines HepG2 and A549. Toxicol In vitro 22:411–421

    Article  CAS  Google Scholar 

  • Castranova V, Jane YC, Yang HM, Antonini LB, Barger MW, Roberts J, Joseph KH (2001) Effect of exposure to diesel exhausts particles on the susceptibility of the lung to infection. Environ Health Perspect 109:609–612

    CAS  Google Scholar 

  • Castro L, Freeman BA (2001) Reactive oxygen species in human health and disease. Nutrition 17:161–165

    Article  CAS  Google Scholar 

  • Charrier JG, Anastasio C (2011) Impacts of antioxidants on hydroxyl radical production from individual and mixed transition metals in a surrogate lung fluid. Atmos Environ 45:7555–7562

    Article  CAS  Google Scholar 

  • Chen YT, Chi HK, Wang SJ, Chien CL, Lin WW (2009) Reactive oxygen species are involved in FasL-induced caspase-independent cell death and inflammatory responses. Free Radic Biol Med 46(5):643–655

    Article  CAS  Google Scholar 

  • Chew FT, Ooi BC, Hui JKS, Saharom R, Goh DYT, Lee BW (1995) Singapore’s haze and acute asthma in children. Lancet 346:1427

    Article  CAS  Google Scholar 

  • Dellinger B, Pryor WA, Cueto R, Squadrito GL, Hegde V, Deutsch WA (2001) Role of free radicals in the toxicity of airborne fine particulate matter. Chem Res Toxicol 14:1371–1377

    Article  CAS  Google Scholar 

  • Donaldson K, Tran CL (2002) Inflammation caused by particles and fibres. Inhal Toxicol 14:5–27

    Article  CAS  Google Scholar 

  • Donaldson K, Beswick PH, Gilmour PS (1996) Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett 88(1–3):293–298

    Article  CAS  Google Scholar 

  • Emmanuel SC (2000) Impact to lung health of haze from forest fires: the Singapore experience. Respirology 5:175–182

    Article  CAS  Google Scholar 

  • Engling G, Herckes P, Kreidenweis SM, Malm WC, Collett JL (2006) Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study. Atmos Environ 40:2959–2972

    Article  CAS  Google Scholar 

  • Garcon G, Zerimech F, Hannothiaux MH, Gosset P, Martin A, Marez T, Shirali P (2001) Antioxidant defense disruption by polycyclic aromatic hydrocarbons-coated onto Fe2O3 particles in human lung cells (A549). Toxicology 166:129–137

    Article  CAS  Google Scholar 

  • Garshick E, Laden F, Hart EJ, Rosner B, Smith JT, Dockery WD, Speizer EF (2004) Lung cancer in railroad workers exposed to diesel exhaust. Environ Health Perspect 112(15):1539–1543

    Article  CAS  Google Scholar 

  • Garza MK, Soto FK, Murr EL (2008) Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int J Nanomedicine 3(1):83–94

    Article  CAS  Google Scholar 

  • Ghio AJ, Kennedy TP, Whorton AR, Crumbliss AL, Hatch GE, Hoidal JR (1992) Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. Am J Physiol 263:L511–L519

    CAS  Google Scholar 

  • Goldsmith C-AW, Imrich A, Danaee H, Ning YY, Kobzik L (1998) Analysis of air pollution particulate-mediated oxidant stress in alveolar macrophages. J Toxicol Environ Health A 54:529–545

    Article  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  Google Scholar 

  • Gualtieri M, Mantecca P, Corvaja V, Longhin E, Perrone GM, Bolzacchini E, Camatini M (2009) Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549). Toxicol Lett 188:52–62

    Article  CAS  Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems—source, biochemistry, and role in human disease. Am J Med 91:S14–S22

    Article  Google Scholar 

  • He J, Zielinska B, Balasubramanian R (2010) Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning. Atmos Chem Phys 10:11401–11413

    Article  CAS  Google Scholar 

  • Hudson BJF (1990) Food antioxidants. Elsevier, Amsterdam

    Book  Google Scholar 

  • Jalava IP, Salonen OR, Halinen IA, Penttinen P, Pennanen SA, Sillanpaa M, Sandell E, Hillamo R, Hirvonen RM (2006) In vitro inflammatory and cytotoxic effects of size-segregated particulate samples collected during long-range transport of wildfire smoke in Helsinki. Toxicol Appl Pharmacol 215:341–353

    Article  CAS  Google Scholar 

  • Karthikeyan S, Balasubramanian R, Louri K (2006a) Particulate air pollution from bushfires: human exposure and possible health effects. J Toxicol Environ Health A 69:1–14

    Article  Google Scholar 

  • Karthikeyan S, Balasubramanian R, See WS (2006b) Optimization and validation of a low temperature microwave-assisted extraction method for analysis of polycyclic aromatic hydrocarbons in airborne particulate matter. Talanta 69:79–86

    Article  CAS  Google Scholar 

  • Karthikeyan S, Joshi UM, Balasubramanian R (2006c) Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. Anal Chim Acta 576:23–30

    Article  CAS  Google Scholar 

  • Kiechle FL, Zhang XB (2002) Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 326(1–2):27–45

    Article  CAS  Google Scholar 

  • Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, Lushchak VI (2010) Chromium effects on free radical processes in goldfish tissues: comparison of Cr (III) and Cr(VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol-C Pharmacol Toxicol 152(3):360–370

    Article  Google Scholar 

  • Moller M, Alfheim I (1980) Mutagenicity and PAH—analysis of airborne particulate matter. Atmos Environ 14:83–88

    Article  CAS  Google Scholar 

  • Muraleedharan TR, Radojevic M, Waugh A, Caruna A (2000) Chemical characterization of the haze in Brunei Darussalam during the 1998 episode. Atmos Environ 34:2725–2731

    Article  CAS  Google Scholar 

  • Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106

    Article  CAS  Google Scholar 

  • Nichol J (1998) Smoke haze in Southeast Asia: a predictable reoccurrence. Atmos Environ 32(14/15):2715–2716

    Article  CAS  Google Scholar 

  • Nichol J (1999) Bioclimatic impacts of the 1994 smoke haze event in Southeast Asia. Atmos Environ 31(8):1209–1219

    Article  Google Scholar 

  • Nzengue Y, Steiman R, Garrel C, Lefèbvre E, Guiraud P (2008) Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium. Toxicology 243(1–2):193–206

    Article  CAS  Google Scholar 

  • Oberdoster G, Utell MJ (2002) Ultrafine particles in urban air: to the respiratory tract—and beyond? Environ Health Perspect 110:A440–A441

    Article  Google Scholar 

  • Richter-Reichhelm H-B, Emura M, Matthei S, Mohr U (1979) Cytotoxic and transforming effects of polycyclic hydrocarbons (PAH) on Syrian hamster fetal lung cell cultures. Mut Res 64(2):123–124

    Google Scholar 

  • Samet JM, Dominici F, Currireo C, Coursac I, Segeret SL (2000) Fine particulate air pollution and mortality in 20 U.S. cities. N Engl J Med 343:1742–1749

    Article  CAS  Google Scholar 

  • See SW, Balasubramanian R, Wang W (2006) A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. J Geophys Res-Atmos 111(D10):D10S08. doi:10.1029/2005JD006180

    Article  Google Scholar 

  • See SW, Balasubramanian R, Rianawati E, Karthikeyan S, Streets DG (2007) Characterization and source apportionment of particulate matter ≤2.5 μm in Sumatra, Indonesia, during a Recent Peat Fire Episode. Environ Sci Technol 41(10):3488–3494

    Article  CAS  Google Scholar 

  • Shih YL, Lin JC, Hsu WS, Wang HS, Chen LW, Lee TM, Wei HY, Shih MC (2005) Cadmium toxicity toward caspase-independent apoptosis through the Mitochondria-calcium pathway in mtDNA-depleted cells. Ann NY Acad Sci 1042:497–505

    Article  CAS  Google Scholar 

  • Sillanpaa M, Saarikoski S, Hillamo R, Pennanen A, Makkonen U, Spolnik Z, Grieken VR, Koskentalo T, Salonen OR (2005) Chemical composition, mass size distribution and source analysis of long range transported wildfires in Helsinki. Sci Total Environ 351:119–135

    Article  Google Scholar 

  • Smith KR, Veranth JM, Hu AA, Lighty JS, Aust AE (2000) Interleukin-8 levels in human lung epithelial cells are increased in response to coal fly ash and vary with the bioavailability of iron, as a function of particle size and source of coal. Chem Res Toxicol 13(2):118–125

    Article  CAS  Google Scholar 

  • Straif K, Baan R, Grosse Y, Secretan B, Ghissassi F, Cogliano V (2005) Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncol 6:931–932

    Article  Google Scholar 

  • Tan J-H, Duan J-C, Chen D-H, Wang X-H, Guo S-J, Bi X-H, Sheng G-Y, He K-B, Fu J-M (2009) Chemical characteristics of haze during summer and winter in Guangzhou. Atom Res 94:238–245

    Article  CAS  Google Scholar 

  • The Straits Times. http://www.straitstimes.com/BreakingNews/Singapore/Story/STIStory_593615.html

  • Valavanidis A, Salika A, Theodoropoulou A (2000) Generation of hydroxyl radicals by urban suspended particulate air matter: the role of iron ions. Atmos Environ 34:2379–2386

    Article  CAS  Google Scholar 

  • Van Maanen JMS, Borm PJA, Knaapen A, Van HM, Schilderman PAEL, Smith KR, Aust AE, Tomatis M, Fubini B (1999) In vitro effects of coal fly ashes. Hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhal Toxicol 11:1123–1141

    Article  Google Scholar 

  • Verma V, Polidori A, Schauer JJ, Shafer MM, Cassee FR (2009) Physiological and toxicological profiles of particulate matter in Los Angeles during the October 2007 Southern Californian Wildfires. Environ Sci Technol 43(3):954–960

    Article  CAS  Google Scholar 

  • Vousta D, Samara C (2002) Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos Environ 36:3583–5390

    Article  Google Scholar 

  • Ward DE (1990) Factors influencing the emissions of gases and particulate matter from biomass. In: Johan GG (ed) Fire in the tropical biota. Springer, Berlin, p 479

    Google Scholar 

  • Xu J, Lian L, Wu C, Wang X-F, Fu W-Y, Xu L-H (2008) Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol 46(5):1488–1494

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajasekhar Balasubramanian.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 243 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavagadhi, S., Betha, R., Venkatesan, S. et al. Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode. Environ Sci Pollut Res 20, 2569–2578 (2013). https://doi.org/10.1007/s11356-012-1157-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1157-9

Keywords

Navigation