Skip to main content
Log in

A concurrent neuro-fuzzy inference system for screening the ecological risk in rivers

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

A conceptual model to assess water quality in river basins was developed here. The model was based on ecological risk assessment principles, and incorporated a novel ranking and scoring system, based on self-organizing maps, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater. This approach was used to study the chemical pollution in the Ebro River basin (Spain), whose currently applied environmental indices must be revised in terms of scientific accuracy.

Methods

Ecological hazard indexes for chemical substances were calculated by pattern recognition of persistence, bioaccumulation, and toxicity properties. A fuzzy inference system was proposed to compute ecological risk points (ERP), which are a combination of the ecological hazard to aquatic sensitive organisms and environmental concentrations. By aggregating ERP, changes in water quality over time were estimated.

Results

The proposed concurrent neuro-fuzzy model was applied to a comprehensive dataset of the network controlling the levels of dangerous substances, such as metals, pesticides, and polycyclic aromatic hydrocarbons, in the Ebro river basin. The approach was verified by comparison versus biological monitoring. The results showed that water quality in the Ebro river basin is affected by presence of micro-pollutants.

Conclusions

The ERP approach is suitable to analyze overall trends of potential threats to freshwater ecosystems by anticipating the likely impacts from multiple substances, although it does not account for synergies among pollutants. Anyhow, the model produces a convenient indicator to search for pollutant levels of concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Guerra M, González-Piñuela C, Andrés A, Galán B, Viguri JR (2008) Assessment of self-organizing map artificial neural networks for the classification of sediment quality. Environ Int 34:782–790

    Article  Google Scholar 

  • Annas S, Kanai T, Koyama S (2007) Assessing daily tropical rainfall variations using a neuro-fuzzy classification model. Ecol Inform 2:159–166

    Article  Google Scholar 

  • Aronson D, Boethling R, Howard P, Stiteler W (2006) Estimating biodegradation half-lives for use in chemical screening. Chemosphere 63:1953–1960

    Article  CAS  Google Scholar 

  • Batra R, Chandna VK (2009) Comparative analysis for preprocessing voltage at remote terminal unit by using different membership functions. IEEE International Advance Computing Conference, pp. 453–457

  • Bunke D, Oldenburg C (2005) Indicators for chemicals: sources, impacts and policy performance. Environ Sci Pollut Res 12:310–314

    Article  CAS  Google Scholar 

  • Camusso M, Galassi S, Vignati D (2002) Assessment of river Po sediment quality by micropollutant analysis. Water Res 36:2491–2504

    Article  CAS  Google Scholar 

  • Chau KW (2006) A review on integration of artificial intelligence into water quality modelling. Mar Pollut Bull 52:726–733

    Article  CAS  Google Scholar 

  • Chau KW, Cheng CT, Li CW (2002) Knowledge management system on flow and water quality modeling. Expert Syst Appl 22:321–330

    Article  Google Scholar 

  • CHE (2002) Informe final red de diatomeas en la cuenca del Ebro - Campaña de muestreo verano 2002. Ministerio del Medio Ambiente - Confederación Hidrográfica del Ebro, Zaragoza (Spain)

    Google Scholar 

  • CHE (2005) Red de intercalibración, red de referencia y red básica de diatomeas en la cuenca del Ebro. Ministerio del Medio Ambiente - Confederación Hidrográfica del Ebro, Zaragoza (Spain)

    Google Scholar 

  • DEPA (2004) Quantitative structure-activity relationships (QSAR) and pesticides. Danish Environmental Protection Agency (DEPA), Report No 94, Copenhagen, Denmark

  • EC (2006) Proposal for a Directive of the European Parliament and of the council on environmental quality standards in the field of water policy and amending Directive 2000/60/EC, COM(2006) 397 final. European Commission

  • Goma J, Ortiz R, Cambra J, Ector L (2004) Water quality evaluation in Catalonian Mediterranean rivers using epilithic diatoms as bioindicators. Vie Milieu 54:81–90

    Google Scholar 

  • Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) Handbook of environmental degradation rates. Lewis Publishers, Ann Arbor, MI, USA

    Google Scholar 

  • Huang F, Wang X, Lou L, Zhou Z, Wu J (2010) Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res 44:1562–1572

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Thissen U, Guinee JB, Jager T, Kalf D, van de Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41:541–573

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Struijs J, Goedkoop M, Heijungs R, Jan Hendriks A, van de Meent D (2005) Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment. Chemosphere 61:1495–1504

    Article  CAS  Google Scholar 

  • Jang JSR (1993) ANFIS - Adaptive-Network-Based Fuzzy Inference System. IEEE T Syst Man Cyb 23:665–685

    Article  Google Scholar 

  • Jassar S, Liao Z, Zhao L (2011) A recurrent neuro-fuzzy system and its application in inferential sensing. Appl Soft Comput 11:2935–2945, ISSN 1568–4946

    Article  Google Scholar 

  • Juraske R, Anton A, Castells F, Huijbregts MAJ (2007) PestScreen: a screening approach for scoring and ranking pesticides by their environmental and toxicological concern. Environ Int 33:886–893

    Article  CAS  Google Scholar 

  • Knekta E, Andersson PL, Johansson M, Tysklind M (2004) An ovERPiew of OSPAR priority compounds and selection of a representative training set. Chemosphere 57:1495–1503

    Article  CAS  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  Google Scholar 

  • Legrand H, Herlory O, Guarini JM, Blanchard GF, Richard P (2006) Inhibition of microphytobenthic photosynthesis by the herbicides atrazine and diuron. Cah Biol Mar 47:39–45

    Google Scholar 

  • Linders JB, Jansma JW, Mensink BJ, Otermann K (1994) Pesticides: benefaction or Pandora’s Box? A synopsis of the environmental aspects of 243 pesticides (Report 679101014). National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands

    Google Scholar 

  • López E, Schuhmacher M, Domingo JL (2008) Human health risks of petroleum-contaminated groundwater. Environ Sci Pollut Res 15:278–288

    Article  Google Scholar 

  • Lyons G (2006) Viewpoint: policy requirements for protecting wildlife from endocrine disruptors. Environ Health Perspect 114:142–146

    Article  Google Scholar 

  • Mackay D, Shiu WY, Ma KC (2000) Physical-chemical properties and environmental fate handbook on CD-ROM. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Mari M, Nadal M, Schuhmacher M, Domingo JL (2010) Application of self-organizing maps for PCDD/F pattern recognition of environmental and biological samples to evaluate the impact of a hazardous waste incinerator. Environ Sci Technol 44:3162–3168

    Article  CAS  Google Scholar 

  • Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H, Gouchie S (1999) Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ Toxicol Chem 18:664–672

    Article  CAS  Google Scholar 

  • MMA (2000) Real Decreto 995/2000 por el que se fijan objetivos de calidad para determinadas sustancias contaminantes (BOE 147). Ministerio del Medio Ambiente, Madrid, Spain

    Google Scholar 

  • Muttil N, Chau KW (2006) Neural network and genetic programming for modelling coastal algal blooms. Int J Environ Pollut 28:223–238

    Article  CAS  Google Scholar 

  • Muttil N, Chau KW (2007) Machine learning paradigms for selecting ecologically significant input variables. Eng Appl Artif Intell 20:735–744

    Article  Google Scholar 

  • Nadal M, Kumar V, Schuhmacher M, Domingo JL (2006) Definition and GIS-based characterization of an integral risk index applied to a chemical/petrochemical area. Chemosphere 64:1526–1535

    Article  CAS  Google Scholar 

  • Ocampo-Duque W, Ferré-Huguet N, Domingo JL, Schuhmacher M (2006) Assessing water quality in rivers with fuzzy inference systems: a case study. Environ Int 32:733–742

    Article  CAS  Google Scholar 

  • Ocampo-Duque W, Schuhmacher M, Domingo JL (2007) A neural-fuzzy approach to classify the ecological status in surface waters. Environ Pollut 148:634–641

    Article  CAS  Google Scholar 

  • Ocampo-Duque W, Sierra J, Ferré-Huguet N, Schuhmacher M, Domingo JL (2008) Estimating the environmental impact of micro-pollutants in the low Ebro River (Spain): an approach based on screening toxicity with Vibrio fischeri. Chemosphere 72:715–721

    Article  CAS  Google Scholar 

  • Payet J (2004) Assessing toxic impacts on aquatic ecosystems in life cycle assessment. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland

  • Pennington DW, Bare JC (2001) Comparison of chemical screening and ranking approaches: the waste minimization prioritization tool versus toxic equivalency potentials. Risk Anal 21:897–912

    Article  CAS  Google Scholar 

  • Posthuma L, De Zwart D (2006) Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, Rivers. Environ Toxicol Chem 25:1094–1105

    Article  CAS  Google Scholar 

  • Prygiel J, Carpentier P, Almeida S, Coste M, Druart JC, Ector L, Guillard D, Honore MA, Iserentant R, Ledeganck P, Lalanne-Cassou C, Lesniak C, Mercier I, Moncaut P, Nazart M, Nouchet N, Peres F, Peeters V, Rimet F, Rumeau A, Sabater S, Straub F, Torrisi M, Tudesque L, Van de Vijver B, Vidal H, Vizinet J, Zydek N (2002) Determination of the biological diatom index (IBD NF T 90–354): results of an intercomparison exercise. J Appl Phycol 14:27–39

    Article  Google Scholar 

  • RAIS (2007) Risk Assessment Information System. Ecological Benchmark Tool. Oak Ridge US. Available at http://rais.ornl.gov/tools/eco_search.php (Accessed 20/02/2011)

  • Roig N, Nadal M, Sierra J, Ginebreda A, Schuhmacher M, Domingo JL (2011) Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods. Environ Int 37:671–677

    Article  CAS  Google Scholar 

  • Ross TJ (2004) Fuzzy logic with engineering applications. John Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  • Schmitt-Jansen M, Altenburger R (2005) Toxic effects of isoproturon on periphyton communities - a microcosm study. Estuar Coast Shelf Sci 62:539–545

    Article  CAS  Google Scholar 

  • Swanson MB, Socha AC (1997) Chemical ranking and scoring: guidelines for relative assessments of chemicals. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, Florida, USA

    Google Scholar 

  • Terrado M, Barcelo D, Tauler R (2006) Identification and distribution of contamination sources in the Ebro river basin by chemometrics modelling coupled to geographical information systems. Talanta 70:691–704

    Article  CAS  Google Scholar 

  • Tomlin CDS (2002) The e-pesticide manual, version 2.2. The British Crop Protection Council, Surray, UK

    Google Scholar 

  • Tsakovski S, Astel A, Simeonov V (2010) Assessment of the water quality of a river catchment by chemometric expertise. J Chemometr 24:694–702

    Article  CAS  Google Scholar 

  • USDOE (1999) Aquatic Toxicity Reference Values, United States Department of Energy Savanah River Site. Aiken, United States. Available at: http://www.srs.gov/general/programs/soil/ffa/rdh/p76.PDF (Accessed 20/02/2011)

  • USEPA (2000) Waste minimization prioritization tool: background document for the tier III PBT chemical list. Appendix A: WMPT summary spreadsheet. Office of solid waste and office of pollution prevention and toxics. Unite States EPA, Washington, DC

    Google Scholar 

  • USEPA (2011a) Ecological risk assessment: freshwater screening benchmarks. United States Environmental Protection Agency. Available at http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/fw/screenbench.htm. (Accessed 20/02/2011)

  • USEPA (2011b) Estimation Program Interface Suite (EPI Suite™) v3.12. Office of Pollution Prevention and Toxics: Available at: http://www.epa.gov/opptintr/exposure/pubs/episuite.htm. (Accessed 20/02/2011)

  • USGS (2004) Water Quality Benchmarks of the NAWQA Program. United States Geological Survey. Available at: http://or.water.usgs.gov/sumrpt/

  • Vesanto J, Himberg J, Alhonniemi E, Parhankangas J (2000) SOM toolbox for matlab 5. Helsinki University of Technology. http://www.cis.hut.fi/projects/somtoolbox/. (Accessed 20/02/2011)

  • Vighi M, Finizio A, Villa S (2006) The evolution of the environmental quality concept: from the USEPA Red Book to the European Water Framework Directive. Environ Sci Pollut Res 13:9–14

    Article  CAS  Google Scholar 

  • Wang X, Abraham A, Smith KA (2005) Intelligent web traffic mining and analysis. J Netw Comput Appl 28:147–165

    Article  Google Scholar 

  • Wu CL, Chau KW (2006) Mathematical model of water quality rehabilitation with rainwater utilization? A case study at Haigang. Int J Environ Pollut 28:534–545

    Article  CAS  Google Scholar 

  • Xie JX, Cheng CT, Chau KW, Pei YZ (2006) A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity. Int J Environ Pollut 28:364–381

    Article  CAS  Google Scholar 

  • Zhao MY, Cheng CT, Chau KW, Li G (2006) Multiple criteria data envelopment analysis for full ranking units associated to environment impact assessment. Int J Environ Pollut 28:448–464

    Article  CAS  Google Scholar 

  • Zhu D, Wang TW, Cai CF, Li L, Shi ZH (2009) Large-scale assessment of soil erosion using a neuro-fuzzy model combined with GIS: a case study of Hubei Province, China. Land Degrad Develop 20:654–666

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Program Alban (scholarship E04D028890CO), Obra Social Caixa Sabadell, and the Spanish Ministry of Science and Innovation through the project Consolider-Ingenio 2010 CSD2009-00065. The authors thank Susana Cortés for her valuable collaboration in providing the required database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Schuhmacher.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocampo-Duque, W., Juraske, R., Kumar, V. et al. A concurrent neuro-fuzzy inference system for screening the ecological risk in rivers. Environ Sci Pollut Res 19, 983–999 (2012). https://doi.org/10.1007/s11356-011-0595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0595-0

Keywords

Navigation