Skip to main content

Advertisement

Log in

PM10 source apportionment in the surroundings of the San Vicente del Raspeig cement plant complex in southeastern Spain

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Introduction

The concentrations of trace metals, ionic species, and carbonaceous components in PM10 (particulate matter with aerodynamic diameters smaller than 10 µm) were measured from samples collected near an industrial complex, primarily composed of cement plants, in southeastern Spain, from September 2005 to August 2006.

Materials and methods

Positive matrix factorization and conditional probability function were applied to this data set to identify different types of sources.

Results

Six significant sources were identified: crustal matter, traffic, aged sea salt, industrial emissions, secondary aerosol, and sea salt. The difficulty of separating anthropogenic sources from those of natural origin is highlighted in this study; in particular, the crustal source can be connected with both natural (African outbreaks, wind resuspension) and man-made emissions, like fugitive emissions in an industrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbey DE, Nishino N, McDonell WF, Burchette RJ, Knutsen SF, Beeson WL et al (1999) Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Respir Crit Care Med 159:373–382

    CAS  Google Scholar 

  • Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J et al (2009) Quantifying road dust resuspension in urban environment by Multilinear Engine: a comparison with PMF2. Atmos Environ 43:2770–2780

    Article  CAS  Google Scholar 

  • Ashbaugh LL, Malm WC, Sadeh WZ (1985) A residence time probability analysis of sulfur concentrations at Grand Canyon national park. Atmos Environ 19:1263–1270

    Article  CAS  Google Scholar 

  • Begum AB, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038

    Article  CAS  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Tech 25:221–241

    Article  CAS  Google Scholar 

  • Dockery DW, Pope CA III (1994) Acute respiratory effects of particulate air pollution. Annu Rev Publ Health 15:107–132

    Article  CAS  Google Scholar 

  • Galindo N, Nicolás JF, Yubero E, Caballero S, Pastor C, Crespo J (2008) Factors affecting levels of aerosol sulfate and nitrate on the Western Mediterranean coast. Atmos Res 88:305–313

    Article  CAS  Google Scholar 

  • Hopke PK, Lamb RE, Natusch D (1980) Multielemental characterization of urban roadway dust. Environ Sci Technol 14:164–172

    Article  CAS  Google Scholar 

  • Huerbert BJ, Charlson RJ (2000) Uncertainties in data on organics aerosols. Tellus B 52:1249–1255

    Article  Google Scholar 

  • Kim BM, Henry RC (2000) Application of SAFER model to the Los Angeles PM10 data. Atmos Environ 34:1747–1759

    Article  CAS  Google Scholar 

  • Kim KH, Hopke PK (2004a) Comparison between conditional probability function and nonparametric regression for fine particle source directions. Atmos Environ 38:4667–4673

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK (2004b) Source apportionment of fine particles at Washington, DC utilizing temperature resolved carbon fractions. J Air Waste Manage 54:773–785

    CAS  Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2004) Improving source identification of Atlanta aerosol using temperature resolve carbon fractions in positive matrix factorization. Atmos Environ 38:3349–3362

    Article  CAS  Google Scholar 

  • Lippmann M (1998) The 1997 US EPA standards for particulate matter and ozone. In: Hester RE, Harrison RM (eds) Issues in environmental science and technology, 10. Royal Society of Chemistry, London, pp 75–99

    Google Scholar 

  • Natusch DFS, Wallace JR, Evans CA Jr (1974) Toxic trace elements: preferential concentration in respirable particles. Science 183:202–204

    Article  CAS  Google Scholar 

  • Nicolás J, Chiari M, Crespo J, Garcia Orellana I, Lucarelli F, Nava S et al (2008) Quantification of Saharan and local dust impact in an arid Mediterranean area by the positive matrix factorization (PMF) technique. Atmos Environ 42:8872–8882

    Article  Google Scholar 

  • Nicolás J, Yubero E, Galindo N, Gimenez J, Castañer R, Carratalá A et al (2009a) Characterization of events by aerosol mass size distributions. J Environ Monit 11:394–399

    Article  Google Scholar 

  • Nicolás J, Galindo N, Yubero E, Pastor C, Esclapez R, Crespo J (2009b) Aerosol inorganic ions in a Semiarid region on the southeastern Spanish Mediterranean coast. Water Air Soil Poll 201:149–159

    Article  Google Scholar 

  • Pacyna JM (1986) Emission factors of atmospheric elements. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere. Wiley, New York, pp 33–52

    Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemometr Intell Lab 38:223–242

    Article  CAS  Google Scholar 

  • Paatero P (2004) User’s guide for positive matrix factorization programs PMF2 and PMF3, Par. 1: tutorial

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Paatero P, Hopke PK (2003) Discarding or downweighting high-noise variables in factor analytic models. Anal Chim Acta 490:277–289

    Article  CAS  Google Scholar 

  • Paatero P, Hopke PK, Song X, Ramadan Z (2002) Understanding and controlling rotations in factor analytic models. Chemometr Intell Lab 60:253–264

    Google Scholar 

  • Pakkanen T, Loukkola K, Korhonen C, Aurela M, Mäkelä T, Hillamo R et al (2001) Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmos Environ 35:5381–5391

    Article  CAS  Google Scholar 

  • Polissar AV, Hopke PK, Paatero P, Malm WC, Sisler JF (1998) Atmospheric aerosol over Alaska 2. Elemental composition and sources. J Geophys Res 103(D15):19045–19057

    Article  CAS  Google Scholar 

  • Qin Y, Oduyemi K, Chan LY (2002) Comparative testing of PMF and CFA models. Chemometr Intell Lab 61:75–87

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Moreno T, Viana MM, Castillo S, Pey J et al (2008) Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos Environ 42:3964–3979

    Article  CAS  Google Scholar 

  • Salvador P, Artiñano B, Querol X, Alastuey A, Costoya M (2007) Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. Atmos Environ 41:1–17

    Article  CAS  Google Scholar 

  • Tauler R, Viana M, Querol X, Alastuey A, Flight RM, Wentzell PD et al (2009) Comparison of the results obtained by four receptor modeling methods in aerosol source apportionment studies. Atmos Environ 43:3989–3997

    Article  CAS  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282

    Article  CAS  Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK et al (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Elche City Hall for allowing access to their facilities for the placement of the instruments, the Air Quality Surveillance Network of the Valencian Community Regional Government for supplying data, and Paul Nordstrom and Guillermo Escribano for their assistance in this work. This work was funded by research project from the Spanish Ministry of Environment (GRACCIE-CSD2007-00067)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Yubero.

Additional information

Responsible editor: Euripides Stephanou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yubero, E., Carratalá, A., Crespo, J. et al. PM10 source apportionment in the surroundings of the San Vicente del Raspeig cement plant complex in southeastern Spain. Environ Sci Pollut Res 18, 64–74 (2011). https://doi.org/10.1007/s11356-010-0352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0352-9

Keywords

Navigation