Skip to main content

Advertisement

Log in

Challenging the practice of biodiversity offsets: ecological restoration success evaluation of a large-scale railway project

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Large-scale infrastructure development projects are discussed transdisciplinarily in several domains of society. Critics often claim that environmental impact assessments lack real influence on planning, management, and monitoring. We report herein the evaluation of ecological compensation via biodiversity offsets and technical constructions with a secondary compensation function for a new railway in Austria. We asked: (1) where can ecological restoration success be detected, and (2) is our new method of a composite biotope value calculation representative for all criteria we used? We conducted a vegetation inventory on reference areas and all types of measures that created new habitats. Together with a comprehensive, spatially dense habitat mapping, evaluation of six attributes of restoration success and testing of our new method were carried out. Current threats typical for intensive agriculture have been generally reduced. Ecological compensation measures had the highest connectivity but the lowest plant community diversity. Surprisingly, technical constructions provided significantly more plant communities and hosted most Red List species. The species assemblage characteristics of compensation measures, their biotope type diversity, and their mean biotope values were, although lower, comparable to the reference. Despite the poor performance of technical areas in the final biotope values, our results call for their reconsideration as potential tools for ecological compensation by greening grey infrastructure in the near future. The tested new method provided an overall statement for the ecological restoration evaluation and could also be used for nature evidence inventories and as a valuable decision support tool in landscape planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bell SS, Middlebrooks ML, Hall MO (2014) The value of long-term assessment of restoration: support from a seagrass investigation. Restor Ecol 22:304–310

    Article  Google Scholar 

  • Bradshaw AD (1997) What do we mean by restoration? In: Urbanska KM, Webb NR, Edwards PJ (eds) Restoration ecology and sustainable development. Cambridge University Press, Cambridge, pp 8–14

    Google Scholar 

  • Essl F, Egger G (2010) Lebensraumvielfalt in Österreich—Gefährdung und Handlungsbedarf. Zusammenschau der Roten Liste gefährdeter Biotoptypen Österreichs. Naturwissenschaftlicher Verein für Kärnten, Klagenfurt

    Google Scholar 

  • Gioria M, Schaffers A, Bacaro G, Feehan J (2010) The conservation value of farmland ponds: predicting water beetle assemblages using vascular plants as a surrogate group. Biol Conserv 143:1125–1133

    Article  Google Scholar 

  • Goncalves B, Marques A, Soares AMVDM, Pereira HM (2015) Biodiversity offsets: from current challenges to harmonized metrics. Curr Opin Environ Sustain 14:61–67

    Article  Google Scholar 

  • Grayson JE, Chapman MG, Underwood AJ (1999) The assessment of restoration of habitat in urban wetlands. Landsc Urban Plan 43:227–236

    Article  Google Scholar 

  • Hennekens SM, Schamineé JHJ (2001) TURBOVEG, a comprehensive database management system for vegetation data. J Veg Sci 12:589–591

    Article  Google Scholar 

  • Hermann A, Wrbka T (2009) Implications of landscape heterogeneity on ecological values in selected types of agriculture landscapes. Geoscape 4:74–85

    Google Scholar 

  • Hill MO (1979) TWINSPAN: a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecology and Systematics, Cornell University, Ithaca

    Google Scholar 

  • Hughes FMR, Stroh PA, Adams WM, Kirby KJ, Mountford JO, Warrington S (2011) Monitoring and evaluating large-scale, ‘open-ended’ habitat creation projects: a journey rather than a destination. J Nat Conserv 19:245–253

    Article  Google Scholar 

  • Jäch MA (1994) Rote Listen gefährdeter Tiere Österreichs. In: Gepp J (ed) Rote Liste der gefährdeten Käfer Österreichs (Coleoptera). Grüne Reihe des Bundesministeriums für Umwelt, Jugend und Familie, Band 2, Vienna, pp 107–200

    Google Scholar 

  • Lake PS (2001) On the maturing of restoration: linking ecological research and restoration. Ecol Manag Restor 2:110–115

    Article  Google Scholar 

  • Lockwood JL, Pimm SL (1999) When does restoration succeed? In: Weiher E, Keddy P (eds) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 363–392

    Chapter  Google Scholar 

  • Loiskandl G (1997) Landschaftsentwicklung und Biodiversität im Südlichen Tullnerfeld. Diploma thesis. University of Vienna

  • Loro M, Arce RM, Ortega E, Marín B (2014) Road-corridor planning in the EIA procedure in Spain. A review of case studies. Environ Impact Assess Rev 44:11–21

    Article  Google Scholar 

  • MacMahon JA, Holl KD (2001) Ecological restoration—A key to conservation biology’s future. In: Soulé ME, Orians GH (eds) Conservation biology: research priorities for the next decade. Island, Washington, pp 363–392

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Maron M, Hobbs RJ, Moilanen A, Matthews JW, Christie K, Gardner TA, Keith DA, Lindemayer DB, McAlpine CA (2012) Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biol Conserv 155:141–148

    Article  Google Scholar 

  • Moilanen A, van Teeffelen AJA, Ben-Haim Y, Ferrier S (2009) How much compensation is enough? A framework for incorporating uncertainty and time discounting when calculating offset ratios for impacted habitat. Restor Ecol 17:470–478

    Article  Google Scholar 

  • Morris RKA, Alonso I, Jefferson RG, Kirby KJ (2006) The creation of compensatory habitat: can it secure sustainable development? J Nat Conserv 14:106–116

    Article  Google Scholar 

  • Muller S, Dutoit T, Alard D, Grévilliot F (1998) Restoration and rehabilitation of species-rich grassland ecosystems in France: a review. Restor Ecol 6:94–101

    Article  Google Scholar 

  • Nishimoto T, Hada Y (2013) Twelve years of vegetation change in an artificial marsh after the transfer of plants and hydrological restoration. Landsc Ecol Eng 9:131–142

    Article  Google Scholar 

  • Peterseil J, Wrbka T, Plutzar C, Schmitzberger C, Kiss A, Szerencsits E, Reiter K, Schneider W, Suppan F, Beissmann H (2004) Evaluating the ecological sustainability of Austrian agricultural landscapes—The SINUS approach. Land Use Policy 21:307–320

    Article  Google Scholar 

  • Pilgrim JD, Brownlie S, Ekstrom JMM, Gardner TA, von Hase A, Kate KT, Savy CE, Stephens RTT, Temple HJ, Treweek J, Ussher GT, Ward G (2013) A process for assessing the offsetability of biodiversity impacts. Conserv Lett 6:376–384

    Google Scholar 

  • Quétier F, Regnery B, Levrel H (2014) No net loss of biodiversity or paper offsets? A critical review of the French no net loss policy. Environ Sci Policy 38:120–131

    Article  Google Scholar 

  • Rainey HJ, Pollard EHB, Dutson G, Ekstrom JMM, Livingstone SR, Temple HJ, Pilgrim JD (2014) A review of corporate goals of no net loss and net positive impact on biodiversity. Oryx 49:232–238

    Article  Google Scholar 

  • Ruiz-Jaen MC, Aide TM (2005) Restoration success: how is it being measured? Restor Ecol 13:569–577

    Article  Google Scholar 

  • Sætersdal M, Gjerde I, Blom HH, Ihlen PG, Myrseth EW, Pommeresche R, Skartveit J, Solhøy T, Aas O (2003) Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails, and wood living polypore fungi in a northern forest. Biol Conserv 115:21–31

    Article  Google Scholar 

  • Santi E, Maccherini S, Rocchini D, Boninia I, Brunialti G, Favilli L, Perini C, Pezzo F, Piazzini S, Rota E, Salerni E, Chiarucci A (2010) Simple to sample: vascular plants as surrogate group in nature reserve. Nat Conserv 18:2–11

    Article  Google Scholar 

  • Sauberer N, Zulka KP, Abensperg-Traun M, Berg H-M, Bieringer G, Milasowszky N, Moser D, Plutzar C, Pollheimer M, Storch C, Tröstl R, Zechmeister H, Grabherr G (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol Conserv 117:181–190

    Article  Google Scholar 

  • Schmitzberger I, Wrbka T, Steurer B, Aschenbrenner G, Peterseil J, Zechmeister H (2005) How farming styles influence biodiversity maintenance in Austrian agricultural landscapes. Agric Ecosyst Environ 108:274–290

    Article  Google Scholar 

  • Schneider E, Tudor M, Staraş M (2008) Evolution of Babina polder after restoration works—Agricultural polder Babina, a pilot project of ecological restoration. WWF Germany/DDNI Tulcea

  • Society for Ecological Restoration International Science and Policy Working Group (2004) The SER International Primer on Ecological Restoration. www.ser.org & Tucson: Society for Ecological Restoration International

  • Tambosi LR, Martensen AC, Ribeiro MC, Metzger JP (2014) A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor Ecol 22:169–177

    Article  Google Scholar 

  • Tichý L, Holt J, Nejezchlebová M (2011) JUICE—program for management, analysis and classification of ecological data, 2nd edn. Vegetation Science Group, Masaryk University, Brno

    Google Scholar 

  • Tischew S, Baasch A, Conrad MK, Kirmer A (2010) Evaluating restoration success of frequently implemented compensation measures: results and demands for control procedures. Restor Ecol 18:467–480

    Article  Google Scholar 

  • Tiwary A, Kumar P (2014) Impact evaluation of green–grey infrastructure interaction on built-space integrity: an emerging perspective to urban ecosystem service. Sci Total Environ 487:350–360

    Article  CAS  PubMed  Google Scholar 

  • Urbanska KM (2000) Environmental conservation and restoration ecology: two facets of the same problem. Web Ecol 1:20–27

    Article  Google Scholar 

  • Van Diggelen R, Grootjans AP, Harris JA (2001) Ecological restoration: state of the art or state of the science? Restor Ecol 9:115–118

    Article  Google Scholar 

  • Villarroya A, Puig J (2013) A proposal to improve ecological compensation practice in road and railway projects in Spain. Environ Impact Assess Rev 42:87–94

    Article  Google Scholar 

  • Walker LR, Walker J, del Moral R (2007) Forging a new alliance between succession and restoration. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 1–18

    Chapter  Google Scholar 

  • Wiegleb G, Bröring U, Choi G, Dahms H-U, Kanongdate K, Byeon C-W, Ler LG (2013) Ecological restoration as precaution and not as restitutional compensation. Biodivers Conserv 22:1931–1948

    Article  Google Scholar 

  • Willner W (2011) Unambiguous assignment of relevés to vegetation units: the example of the Festuco-Brometea and Trifolio-Geranietea sanguinei. Tuexenia 31:271–282

    Google Scholar 

  • Wortley L, Hero J-M, Howes M (2013) Evaluating ecological restoration success: a review of the literature. Restor Ecol 21:537–543

    Article  Google Scholar 

  • Wrbka T, Kiss A, Schmitzberger I, Thurner B, Peterseil J, Zechmeister HG, Moser D, Steurer B, Scholl S, Aschenbrenner G, Pollheimer M, Lughofer S, Matouch S (2002) LANDLEBEN—Erhaltung von Vielfalt und Qualität des Lebens im ländlichen Raum Österreichs im 21. Jahrhundert, Final report. Bundesministerium für Bildung, Wissenschaft und Kultur, Vienna

    Google Scholar 

  • Wrbka T, Erb K-H, Schulz NB, Peterseil J, Hahn C, Haberl H (2004) Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21:289–306

    Article  Google Scholar 

  • Young TP (2000) Restoration ecology and conservation biology. Biol Conserv 92:73–83

    Article  Google Scholar 

  • Zechmeister HG, Schmitzberger I, Steurer B, Peterseil J, Wrbka T (2003) The influence of land-use practices and economics on plant species richness in meadows. Biol Conserv 114:165–177

    Article  Google Scholar 

  • Zulka KP, Spitzberger F, Frühauf J (2005) Säugetiere, Vögel, Heuschrecken, Wasserkäfer, Netzflügler, Schnabelfliegen, Tagfalter. Rote Listen gefährdeter Tiere Österreichs: checklisten, Gefährdungsanalysen, Handlungsbedarf. Böhlau, Vienna

    Google Scholar 

  • Zulka KP, Gollmann G, Huemer P (2007) Rote Liste gefährdeter Tiere Österreichs (Teil 2 Kriechtiere, Lurche, Fische, Nachtfalter, Weichtiere). Böhlau, Vienna

    Google Scholar 

Download references

Acknowledgments

We wish to thank Carol Resch, Georg Grabherr, Georg Janauer, Anna Hermann, Gerald Timelthaler, Günther Loiskandl, Michael Stachowitsch, Günter Gollmann, Max Abensperg-Traun, Franz Essl, and many others for their valuable contributions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin E. Pöll.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of Austria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1913 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pöll, C.E., Willner, W. & Wrbka, T. Challenging the practice of biodiversity offsets: ecological restoration success evaluation of a large-scale railway project. Landscape Ecol Eng 12, 85–97 (2016). https://doi.org/10.1007/s11355-015-0282-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-015-0282-2

Keywords

Navigation