Skip to main content
Log in

A Ductile Fracture Criterion of Ti-6Al-4V at Room Temperature

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The workability diagram is often used for predicting ductile fracture in metal forming processes. The shape of this diagram is usually determined experimentally by means of several tests. These tests should provide the strain to fracture at different values of the stress triaxiality. For ductile materials, it is difficult to get the shape of the diagram at small (algebraically) values of the stress triaxiality and it is not necessary for many applications. However, for low ductility metals, such as titanium alloys, it is important to propose and carry out tests in which the stress triaxiality is much smaller than in typical tests used to determine the workability diagram. Such a test is proposed and carried out in the present paper. Then, several standard upsetting tests are performed to determine the workability diagram of Ti-6Al-4V in a wide range of the stress triaxiality. The workability diagram is converted into the strain based formability diagram using a theoretical method available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213:103–114

    Article  Google Scholar 

  2. Yamada M (1996) An overview on the development of titanium alloys for non-aerospace application in Japan. Mater Sci Eng A 213:8–15

    Article  Google Scholar 

  3. Schauerte O (2003) Titanium in automotive production. Adv Eng Mater 5:411–418

    Article  Google Scholar 

  4. Leyens C, Peters M (2003) Titanium and titanium alloys. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  5. He Y, XiaoGuang F, ZhiChao S, LiangGang G, Mei Z (2011) Recent developments in plastic forming technology of titanium alloys. SCIENCE CHINA Technol Sci 54:490–501

    Google Scholar 

  6. Mamdouh BO, Rolfe B, Hodgson P, Weiss M (2015) Forming of high strength titanium sheet at room temperature. Mater Des 66:618–626

    Article  Google Scholar 

  7. Li FQ, Mo JH, Li JJ, Huang L, Zhou HY (2013) Formability of Ti–6Al–4V titanium alloy sheet in magnetic pulse bulging. Mater Des 52:337–344

    Article  Google Scholar 

  8. Ceretti E, Fiorentino A, Marenda GP, Cabrini M, Giardini C, Lorenzi S, Pastore T (2012) Valutazione della formabilità di lamiere di titanio a freddo e a tiepido. Metall Ital 10:29–36

    Google Scholar 

  9. Kotkundea N, Guptaa AK (2015) Analysis of forming limit diagram for Ti-6Al-4V alloy. Mater Today: Proc 2:3762–3769

    Article  Google Scholar 

  10. Marciniak Z, Kuczyński K (1967) Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci 9:609–620

    Article  MATH  Google Scholar 

  11. Hur S, Park JS (1999) The 360° cold bending of Ti-6A1-4V large-diameter seamless tube. J Miner Metals Mater Soc 51:28–30

    Article  Google Scholar 

  12. Bathini U, Srivatsan TS, Patnaik A, Quick T (2010) A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy: influence of orientation and microstructure. J Mater Eng Perform 19:1172–1182

    Article  Google Scholar 

  13. Zhang X-m, Zeng W-d, Shu Y, Zhou Y-g, Zhao Y-q, Wu H, Yu H-q (2009) Fracture criterion for predicting surface cracking of Ti40 alloy in hot forming processes. Transactions of Nonferrous Metals Society of China 19:267–271

  14. Zhu Y, Zeng W, Zhang F, Zhao Y, Zhang X, Wang K (2012) A new methodology for prediction of fracture initiation in hot compression of Ti40 titanium alloy. Mater Sci Eng A 553:112–1183

    Article  Google Scholar 

  15. Oyane M, Sato T, Okimoto K, Shima S (1980) Criteria for ductile fracture and their applications. J Mech Work Technol 4:65–81

    Article  Google Scholar 

  16. Oh SI, Chen CC, Kobayashi S (1979) Ductile fracture in axisymmetric extrusion and drawing part 2: workability in extrusion and drawing. J Eng Ind 101:36–44

    Article  Google Scholar 

  17. Giglio M, Manes A, Vigano F (2012) Ductile fracture locus of Ti-6Al-4V titanium alloy. Int J Mech Sci 54:121–135

    Article  Google Scholar 

  18. Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-state. J Mech Phys Solids 24:147–160

    Article  Google Scholar 

  19. Mackenzie AC, Hancock JW, Brown DK (1977) On the influence of state of stress on ductile failure initiation in high strength steels. Eng Fract Mech 9:167–188

    Article  Google Scholar 

  20. Hancock JW, Brown DK (1983) On the role of strain and stress state in ductile failure. J Mech Phys Solids 31:1–24

    Article  Google Scholar 

  21. Vujović V, Shabaik A (1986) Workability criteria for ductile fracture. Trans ASME J Eng Mater Technol 108:245–249

    Article  Google Scholar 

  22. Futakawa M, Butler N (1996) On homologous ductile failure criterion for generalized stress states. Eng Fract Mech 54:349–359

    Article  Google Scholar 

  23. Kudo H, Aoi K (1967) Effect of compression test conditions upon fracturing of medium carbon steel. Jpn Soc Technol Plast 18:17–27

    Google Scholar 

  24. Khun HA, Lee PW, Ertuk T (1973) A fracture criteria for cold forging. J Eng Mater Technol 95:213–218

    Article  Google Scholar 

  25. Ganser HP, Atkins AG, Kolednik O, Fischer FD, Richard O (2001) Upsetting of cylinders: a comparison of two different damage indicators. J Eng Mater Technol 123:94–99

    Article  Google Scholar 

  26. Rao JA, Rao JB, Kamaluddin S, Bhargava N (2011) Studies on cold workability limits of brass using machine vision system and its finite element analysis. J Miner Mater Charact Eng 10:777–830

    Google Scholar 

  27. Vilotic D, Alexandrov S, Ivanisevic A, Milutinovic M (2016) Reducibility of stress – based workability diagram to strain – based workability diagram. Int J Appl Mech 8:1650022

    Article  Google Scholar 

  28. Bridgman PW (1952) Studies in large plastic flow and fracture. McGraw-Hill, New-York

    MATH  Google Scholar 

  29. Buzyurkin AE, Gladky IL, Kraus EI (2015) Determination of parameters of the Johnson – Cook model for the description of deformation and fracture of titanium alloys. J Appl Mech Tech Phys 56:330–336

    Article  Google Scholar 

  30. Goto DM, Koss DA, Jablokov V (1999) The influence of tensile stress states on the failure of HY-100 steel. Metall Mater Trans 30:2835–2842

    Article  Google Scholar 

  31. Vilotic D, Planchak M, Chupkovich D, Alexandrov S, Alexandrova N (2006) Free surface fracture in three upsetting tests. Exp Mech 46:115–120

    Article  Google Scholar 

  32. Jinkook K, Guihua Z, Xiaosheng G (2007) Modeling of ductile fracture: application of the mechanism-based concepts. Int J Solids Struct 44:1844–1862

    Article  MATH  Google Scholar 

  33. Mae H, Teng X, Bai Y, Wierzbicki T (2008) Comparison of ductile fracture properties of aluminum castings: sand mold vs. Metal mold. Int J Solid Struct 45:1430–1444

    Article  MATH  Google Scholar 

  34. Chiantoni G, Bonora N (2010) Experimental study of the effect of triaxiality ratio on the formability limit diagram and ductile damage evolution in steel and high purity copper. Int J Mater Form 9:238–251

    Google Scholar 

  35. Alexandrov S, Vilotic D, Konjovic Z, Vilotic M (2013) An improved experimental method for determining the workability diagram. Exp Mech 53:699–711

    Article  Google Scholar 

  36. Choung J, Nam W, Lee D, Song CY (2014) Failure strain formulation via average stress triaxiality of an EH36 high strength steel. Ocean Eng 91:218–226

    Article  Google Scholar 

  37. Vilotic D, Plancak M, Grbic S, Alexandrov S, Chikanova N (2003) An approach to determining the workability diagram based on upsetting tests. Fatigue Fract Eng Mater Struct 26:305–310

    Article  Google Scholar 

  38. Gouveia BPPA, Rodrigues JMC, Martins PAF (1996) Fracture predicting in bulk metal forming. Int J Mech Sci 38:361–372

    Article  MATH  Google Scholar 

  39. Sljapic V, Hartley P, Pillinger I (2002) Observations on fracture in axi-symmetric and three-dimensional cold upsetting of brass. J Mater Process Technol 125–126:267–274

    Article  Google Scholar 

  40. Alexandrov S, Vilotic M, Jeng YR, Plancak M (2014) A study on material workability by upsetting of non – axisymmetric specimens by flat dies. J Mech 30:585–592

    Article  Google Scholar 

  41. Clausing DP (1970) Effect of plastic strain state on ductility and toughness. Int J Fract Mech 6:71–85

    Google Scholar 

  42. Shah JJ, Kuhn HA (1986) An empirical formula for workability limits in cold upsetting and bolt heading. J Appl Metalwork 4:255–261

    Article  Google Scholar 

  43. Reiss W, Pohlandt K (1986) The Rastegaev upset test – a method to compress large material volumes homogeneously. Exp Tech 10:20–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Movrin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilotic, D., Movrin, D. & Alexandrov, S. A Ductile Fracture Criterion of Ti-6Al-4V at Room Temperature. Exp Mech 57, 359–366 (2017). https://doi.org/10.1007/s11340-016-0210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0210-x

Keywords

Navigation