Skip to main content
Log in

Nano-second Laser-induced Plasma Shock Wave in Air for Non-contact Vibration Tests

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Herein a vibration test method is discussed based on a non-contact, non-destructive excitation input using a laser-induced plasma (LIP) shock wave and a non-contact input estimation using Newton’s second law of motion. We have previously introduced a non-contact vibration test method using an excitation force generated by laser ablation, but it cannot be used when the target structure is lightweight, fragile, and small-sized because a crater with a diameter of several micrometers is created. The LIP generates a highly reproducible shock wave, which become an excitation force to a target structure. This shock wave depends on the gas density, gas specific heat ratio, laser fluence, and ambient environment. If these parameters are constant, the LIP excitation force can be estimated beforehand, allowing only the output measurement to determine the frequency response measurement of an input–output relationship of the target structure. After calibrating the LIP excitation, the frequency response function of a target structure can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu B (2008) High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: a comparative study of the early-stage evolution using a physics-based predictive model. Appl Phys Lett 93:101104. doi:10.1063/1.2979704

    Article  Google Scholar 

  2. Kawahara N, Beduneau JL, Nakayama T, Tomita E, Ikeda Y (2007) Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air. Appl Phys B 86:605–614. doi:10.1007/s00340-006-2531-4

    Article  Google Scholar 

  3. Pandey PK, Gupta SL, Narayanan V, Thareja RK (2012) Air plasma waveguide using pico-sec and nano-sec laser pulses. Phys Plasmas 19:023502. doi:10.1063/1.3676617

    Article  Google Scholar 

  4. Hu W, Shin YC, King G (2011) Effect of air breakdown with a focusing lens on ultrashort laser ablation. Appl Phys Lett 99:234104. doi:10.1063/1.3665631

    Article  Google Scholar 

  5. Oksanen M, Hietanen J (1994) Photoacoustic breakdown sound source in air. Ultrasonics 32:327–331. doi:10.1016/0041-624X(94)90102-3

    Article  Google Scholar 

  6. Qin Q, Attenborough K (2004) Characteristics and application of laser-generated acoustic shock waves in air. Appl Acoust 65:325–340. doi:10.1016/j.apacoust.2003.11.003

    Article  Google Scholar 

  7. Hosoya N, Nagata M, Kajiwara I (2013) Acoustic testing in a very small space based on a point sound source generated by laser-induced breakdown: stabilization of plasma formation. J Sound Vib 332:4572–4583. doi:10.1016/j.jsv.2013.03.035

    Article  Google Scholar 

  8. Georgiev VB, Krylov VV, Qin Q, Attenborough K (2011) Generation of flexural waves in plates by laser-initiated airborne shock waves. J Sound Vib 330:217–228. doi:10.1016/j.jsv.2010.08.005

    Article  Google Scholar 

  9. Beduneau JL, Kim B, Zimmer L, Ikeda Y (2003) Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark. Combus Flame 132:653–665. doi:10.1016/S0010-2180(02)00536-9

    Article  Google Scholar 

  10. Bradley D, Sheppard CGW, Suardjaja IM, Woolley R (2004) Fundamentals of high-energy spark ignition with lasers. Combust Flame 138:55–77. doi:10.1016/j.combustflame.2004.04.002

    Article  Google Scholar 

  11. Ferioli F, Buckley SG (2006) Measurements of hydrocarbons using laser-induced breakdown spectroscopy. Combust Flame 144:435–447. doi:10.1016/j.combustflame.2005.08.005

    Article  Google Scholar 

  12. Zorba V, Syzdek J, Mao X, Russo RE, Kostecki R (2012) Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces. Appl Phys Lett 100:234101. doi:10.1063/1.4724203

    Article  Google Scholar 

  13. Petkovšek R, Horvat D, Močnik G, Terzić M, Možina J (2006) Analysis of optodynamic sources generated during laser-induced breakdown in water. Ultrasonics 44:1255–1258. doi:10.1016/j.ultras.2006.05.078

    Article  Google Scholar 

  14. Huda F, Kajiwara I, Hosoya N (2014) Damage detection in membrane structures using non-contact laser excitation and wavelet transformation. J Sound Vib 333:3609–3624. doi:10.1016/j.jsv.2014.04.008

    Article  Google Scholar 

  15. Zhang Y, Hiruta T, Kajiwara I, Hosoya N (2015) Active vibration suppression of membrane structures and evaluation with a non-contact laser excitation vibration test. J Vib Control. doi: 10.1177/1077546315599302

  16. Bolaños JG, Delikaris-Manias S, Pulkki V, Eskelinen J, Hæggström E (2014) Laser-induced acoustic point source for accurate impulse response measurements within the audible bandwidth. J Acoust Soc Am 135:EL298–EL303. doi:10.1121/1.4879664

    Article  Google Scholar 

  17. Bahr CJ, Zawodny NS, Bertolucci B, Li J, Sheplak M, Cattafesta LN (2015) A plasma-based non-intrusive point source for acoustic beamforming applications. J Sound Vib 344:59–80. doi:10.1016/j.jsv.2015.01.023

    Article  Google Scholar 

  18. Champoux Y, Cotoni V, Paillard B, Beslin O (2003) Moment excitation of structures using two synchronized impact hammers. J Sound Vib 263:515–533. doi:10.1016/S0022-460X(02)01064-7

    Article  Google Scholar 

  19. Elliott AS, Moorhouse AT, Pavić G (2012) Moment excitation and the measurement of moment mobilities. J Sound Vib 331:2499–2519. doi:10.1016/j.jsv.2012.01.022

    Article  Google Scholar 

  20. Hosoya N, Yaginuma S, Onodera H, Yoshimura T (2015) Estimation of the auto frequency response function at unexcited points using dummy masses. J Sound Vib 337:14–27. doi:10.1016/j.jsv.2014.09.033

    Article  Google Scholar 

  21. Hu H, Wang X, Zhai H, Zhang N, Wang P (2010) Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation. Appl Phys Lett 97:061117. doi:10.1063/1.3479919

    Article  Google Scholar 

  22. Alfano M, Lubineau G, Furgiuele F, Paulino GH (2012) Study on the role of laser surface irradiation on damage and decohesion ofAl/ epoxy bonded joints. Int J Adhes Adhes 39:33–41. doi:10.1016/j.331ijadhadh.2012.03.002

    Article  Google Scholar 

  23. Zhou Y, Tao S, Wu B (2011) Backward growth of plasma induced by long nanosecond laser pulse ablation. Appl Phys Lett 99:051106. doi:10.1063/1.3621855

    Article  Google Scholar 

  24. Zeng X, Mao X, Mao SS, Wen SB, Greif R, Russo RE (2006) Laser-induced shockwave propagation from ablation in a cavity. Appl Phys Lett 88:061502. doi:10.1063/1.2172738

    Article  Google Scholar 

  25. Sasaki K, Nakano T, Soliman W, Takada N (2009) Effect of pressurization on the dynamics of a cavitation bubble induced by liquid-phase laser ablation. Appl Phys Express 2:046501

    Article  Google Scholar 

  26. Yabe T, Phipps C, Yamaguchi M, Nakagawa R, Aoki K, Mine H, Ogata Y, Baasandash C, Nakagawa M, Fujiwara E, Yoshida K, Nishiguchi A, Kajiwara I (2002) Microairplane propelled by laser driven exotic target. Appl Phys Lett 80(23):4318. doi:10.1063/1.1485313

    Article  Google Scholar 

  27. Kamata M, Obara M, Gattass RR, Cerami LR, Mazur E (2005) Optical vibration sensor fabricated by femtosecond laser micromachining. Appl Phys Lett 87(5):051106. doi:10.1063/1.2008362

    Article  Google Scholar 

  28. Qian F, Singh RK, Dutta SK, Pronko PP (1995) Laser deposition of diamondlike carbon films at high intensities. Appl Phys Lett 67(21):3120. doi:10.1063/1.114853

    Article  Google Scholar 

  29. Hatamleh O (2008) Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints. Mat Sci Eng A-Struct 492:168–176. doi:10.1016/j.msea.2008.03.017

    Article  Google Scholar 

  30. Kingstedt OT, Lambros J (2015) Ultra-high speed imaging of laser-induced spallation. Exp Mech 55:587–598. doi:10.1007/s11340-014-9973-0

    Article  Google Scholar 

  31. Kajiwara I, Hosoya N (2011) Vibration testing based on impulse response excited by laser ablation. J Sound Vib 330:5045–5057. doi:10.1016/j.jsv.2010.09.036

    Article  Google Scholar 

  32. Hosoya N, Kajiwara I, Hosokawa T (2012) Vibration testing based on impulse response excited by pulsed-laser ablation: Measurement of frequency response function with detection-free input. J Sound Vib 331:1355–1365. doi:10.1016/j.jsv.2011.10.034

    Article  Google Scholar 

  33. Huda F, Kajiwara I, Hosoya N, Kawamura S (2013) Bolt loosening analysis and diagnosis by non-contact laser excitation vibration tests. Mech Syst Signal Process 40:589–604. doi:10.1016/j.ymssp.2013.05.023

    Article  Google Scholar 

  34. Hosoya N, Kajiwara I, Umenai K (2015) Dynamic characterizations of underwater structures using non-contact vibration test based on nanosecond laser ablation in water: investigation of cavitation bubbles by visualizing shockwaves using the Schlieren method. J Vib Control. doi: 10.1177/1077546314564693

  35. Hosoya N, Kajiwara I, Inoue T, Umenai K (2014) Non-contact acoustic tests based on nanosecond laser ablation: Generation of a pulse sound source with a small amplitude. J Sound Vib 333:4254–4264. doi:10.1016/j.jsv.2014.04.050

    Article  Google Scholar 

  36. Hosoya N, Umino R, Kajiwara I, Maeda S, Onuma T, Mihara A (2016) Damage detection in transparent materials using non-contact laser excitation by nano-second laser ablation and high-speed polarization-imaging camera. Exp Mech 56:339–343. doi:10.1007/s11340-012-9646-9

    Article  Google Scholar 

  37. Clorennec D, Prada C, Royer D, Murray TW (2006) Laser impulse generation and interferometer detection of zero group velocity Lamb mode resonance. Appl Phys Lett 89:024101. doi:10.1063/1.2220010

    Article  Google Scholar 

  38. Sale M, Rizzo P, Marzani A (2011) Semi-analytical formulation for the guided waves-based reconstruction of elastic moduli. Mech Syst Signal Pr 25:2241–2256. doi:10.1016/j.ymssp.2011.02.004

    Article  Google Scholar 

  39. Dhital D, Lee JR (2012) A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation. Exp Mech 52:1111–1122. doi:10.1007/s11340-011-9567-z

    Article  Google Scholar 

  40. Balvantín A, Baltazar A, Rodriguez P (2014) Characterization of laser generated Lamb wave modes after interaction with a thickness reduction discontinuity using ray tracing theory. Exp Mech 54:743–752. doi:10.1007/s11340-013-9846-y

    Article  Google Scholar 

  41. Liu P, Sohn H, Kundu T, Yang S (2014) Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS). NDT&E Int 66:106–116. doi:10.1016/j.ndteint.2014.06.002

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Japan Society for the Promotion of Science for their support under the Grants-in-Aid for Scientific Research programs (Grants-in-Aid for Scientific Research (B), Project No. 16H04291 and No. 16H04286, and Grant-in-Aid for Challenging Exploratory Research, Project No. 26630080). We would also like to thank Photron Limited for their assistance photographing plasma formation using their high-speed camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hosoya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoya, N., Nagata, M., Kajiwara, I. et al. Nano-second Laser-induced Plasma Shock Wave in Air for Non-contact Vibration Tests. Exp Mech 56, 1305–1311 (2016). https://doi.org/10.1007/s11340-016-0167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0167-9

Keywords

Navigation