Skip to main content
Log in

Experimental Investigation of an Adaptively Tuned Dynamic Absorber Incorporating Magnetorheological Elastomer with Self-Sensing Property

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The magnetorheological elastomer (MRE) is known to belong to a class of smart materials whose elastic properties can be varied by an externally applied magnetic field. In addition to the property of the field-dependent stiffness change of the MRE, the electrical resistance of the composite is also changed by the induced strain, thereby providing a new self-sensing feature. In the present study, a novel, dynamic vibration absorber is developed using an MRE with a self-sensing function and adaptability. The natural frequency of the absorber is instantaneously tuned to a dominant frequency extracted from the strain signal of MRE. The damping performance test shows that the vibration of a system with one degree-of-freedom that is exposed to a nonstationary disturbance can be adequately reduced by the proposed frequency-tunable dynamic absorber without the use of external sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Den Hartog JP (1956) Mechanical vibrations. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Nagaya K, Kurusu A, Ikai S, Shitani Y (1999) Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control. J Sound Vib 228(4):773–792

    Article  Google Scholar 

  3. Walsh PL, Lamancusa JS (1992) A variable stiffness vibration absorber for minimization of transient vibrations. J Sound Vib 158(2):195–211

    Article  Google Scholar 

  4. Nagarajaiah S, Sonmez E (2007) Structures with semiactive variable stiffness single/multiple tuned mass dampers. J Struct Eng 133(1):67–77

    Article  Google Scholar 

  5. Liu X, Feng X, Shi Y, Wang Y, Shuai Z (2013) Development of a semi-active electromagnetic vibration absorber and its experimental study. J Vib Acoust 135(5):051015

    Article  Google Scholar 

  6. Lokander M, Stenberg B (2003) Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym Test 22:677–680

    Article  Google Scholar 

  7. Gong XL, Zhang XZ, Zhang PQ (2005) Fabrication and characterization of isotropic magnetorheological elastomers. Polym Test 24:669–676

    Article  Google Scholar 

  8. Tian TF, Zhang XZ, Li WH, Alici G, Ding J (2013) Study of PDMS based magnetorheological elastomers. J Phys Conf Ser 412:012038

    Article  Google Scholar 

  9. Stepanov GV, Abramchuk SS, Grishin DA, Nikitin LV, Kramarenko EY, Khokhlov AR (2007) Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer 48:488–495

    Article  Google Scholar 

  10. Koo JH, Khan F, Jang DD, Jung HJ (2010) Dynamic characterization and modeling of magnetorheological elastomers under compressive loadings. Smart Mater Struct 19(11):117002

    Article  Google Scholar 

  11. Shiga T, Okada A, Kurauchi T (2003) Magnetroviscoelastic behavior of composite gels. J Appl Polym Sci 58(4):787–792

    Article  Google Scholar 

  12. Jolly MR, Carlson JD, Muñoz BC, Bullions TA (1996) The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J Intell Mater Syst Struct 7:613–622

    Article  Google Scholar 

  13. Davis LC (1999) Model of magnetorheological elastomers. J Appl Phys 85(6):3348–3351

    Article  Google Scholar 

  14. Zhou GY (2003) Shear properties of a magnetorheological elastomer. Smart Mater Struct 12:139–146

    Article  Google Scholar 

  15. Yang J, Gong X, Deng H, Qin L, Xuan S (2012) Investigation on the mechanism of damping behavior of magnetorheological elastomers. Smart Mater Struct 21:125015

    Article  Google Scholar 

  16. Deng HX, Gong XL (2007) Adaptive tuned vibration absorber based on magnetorheological elastomer. J Intell Mater Syst Struct 18:1205–1210

    Article  Google Scholar 

  17. Lerner AA, Cunefare KA (2008) Performance of MRE-based vibration absorbers. J Intell Mater Syst Struct 19:551–563

    Article  Google Scholar 

  18. Popp KM, Kroger M, Li W, Zhang X, Kosasih PB (2010) MRE properties under shear and squeeze modes and applications. J Intell Mater Syst Struct 21(15):1471–1477

    Article  Google Scholar 

  19. Salzano TB, Calder CA, Dehart DW (1992) Embedded-strain-sensor development for composite smart structures. Exp Mech 32(3):225–229

    Article  Google Scholar 

  20. Wang X, Gordaninejad F, Calgar M, Liu Y, Sutrisno J, Fuchs A (2009) Sensing behavior of magnetorheological elastomers. J Mech Des 131:091004

    Article  Google Scholar 

  21. Bica I (2009) Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater Matters 63:2230–2232

    Google Scholar 

  22. Tian TF, Li WH, Deng YM (2011) Sensing capabilities of graphite based MR elastomers. Smart Mater Struct 20(2):025022

    Article  Google Scholar 

  23. Li W, Kostidis K, Zhang X, Zhou Y (2009) Development of a force sensor working with MR elastomers. Proc IEEE/ASME Int Conf Adv Intell Mech 1:233–238

  24. Carlson JD, Jolly MR (2000) MR fluid, form and elastomer devices. Mechatronics 10:555–569

    Article  Google Scholar 

  25. Shimizu N, Yamazaki H (1993) Development of vibration insulator using a new material silicone gel. Trans JSME C 59(568):3717–3724

    Article  Google Scholar 

  26. Spanos P, Zeldin B (2000) Pitfalls of deterministic and random analysis of systems with hysteresis. J Eng Mech 126:1108–1110

    Article  Google Scholar 

  27. Torvik P, Bagley R (1984) On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 51:294–298

    Article  MATH  Google Scholar 

  28. http://www.inaba-rubber.co.jp/en/index.html (Accessed 16 Apr 2015)

Download references

Acknowledgments

The work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI, Grant-in-Aid for Scientific Research (B), Grant Number 15H03936.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Komatsuzaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsuzaki, T., Inoue, T. & Iwata, Y. Experimental Investigation of an Adaptively Tuned Dynamic Absorber Incorporating Magnetorheological Elastomer with Self-Sensing Property. Exp Mech 56, 871–880 (2016). https://doi.org/10.1007/s11340-016-0137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0137-2

Keywords

Navigation