Skip to main content
Log in

The Role of Surface Structure in Normal Contact Stiffness

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The effects of roughness and fractality on the normal contact stiffness of rough surfaces were investigated by considering samples of isotropically roughened aluminium. Surface features of samples were altered by polishing and by five surface mechanical treatments using different sized particles. Surface topology was characterised by interferometry-based profilometry and electron microscopy. Subsequently, the normal contact stiffness was evaluated through flat-tipped diamond nanoindentation tests employing the partial unloading method to isolate elastic deformation. Three indenter tips of various sizes were utilised in order to gain results across a wide range of stress levels. We focus on establishing relationships between interfacial stiffness and roughness descriptors, combined with the effects of the fractal dimension of surfaces over various length scales. The experimental results show that the observed contact stiffness is a power-law function of the normal force with the exponent of this relationship closely correlated to surfaces’ values of fractal dimension, yielding corresponding correlation coefficients above 90 %. A relatively weak correlation coefficient of 60 % was found between the exponent and surfaces’ RMS roughness values. The RMS roughness mainly contributes to the magnitude of the contact stiffness, when surfaces have similar fractal structures at a given loading, with a correlation coefficient of −95 %. These findings from this work can be served as the experimental basis for modelling contact stiffness on various rough surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Popov VL (2010) Contact mechanics and friction. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  2. Persson BNJ (2006) Contact mechanics for randomly rough surfaces. Surf Sci Rep 61(4):201–227

    Article  Google Scholar 

  3. Assender H, Bliznyuk V, Porfyrakis K (2002) How surface topography relates to materials’ properties. Science 297(5583):973–976

    Article  Google Scholar 

  4. Archard J (1957) Elastic deformation and the laws of friction. Proc R Soc Lond Ser A Math Phys Sci 243(1233):190–205

    Article  Google Scholar 

  5. Greenwood J, Williamson J (1966) Contact of nominally flat surfaces. Proc R Soc Lond Ser A Math Phys Sci 295(1442):300–319

    Article  Google Scholar 

  6. Brake M (2012) An analytical elastic-perfectly plastic contact model. Int J Solids Struct 49(22):3129–3141

    Article  Google Scholar 

  7. Komvopoulos K, Ye N (2001) Three-dimensional contact analysis of elastic–plastic layered media with fractal surface topographies. J Tribol 123(3):632–640

    Article  Google Scholar 

  8. Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457(7233):1116–1119

    Article  Google Scholar 

  9. Barber J, Ciavarella M (2000) Contact mechanics. Int J Solids Struct 37(1):29–43

    Article  MathSciNet  MATH  Google Scholar 

  10. Akarapu S, Sharp T, Robbins MO (2011) Stiffness of contacts between rough surfaces. Phys Rev Lett 106(20):204301

    Article  Google Scholar 

  11. Almqvist A, Campaná C, Prodanov N, Persson B (2011) Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J Mech Phys Solids 59(11):2355–2369

    Article  MathSciNet  MATH  Google Scholar 

  12. Hyun S, Robbins MO (2007) Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol Int 40(10):1413–1422

    Article  Google Scholar 

  13. Pohrt R, Popov VL, Filippov AE (2012) Normal contact stiffness of elastic solids with fractal rough surfaces for one-and three-dimensional systems. Phys Rev E 86(2):026710

    Article  Google Scholar 

  14. Carbone G, Bottiglione F (2008) Asperity contact theories: do they predict linearity between contact area and load? J Mech Phys Solids 56(8):2555–2572

    Article  MATH  Google Scholar 

  15. Kogut L, Komvopoulos K (2003) Electrical contact resistance theory for conductive rough surfaces. J Appl Phys 94(5):3153–3162

    Article  Google Scholar 

  16. Zhai C, Hanaor D, Proust G, Gan Y (2015) Stress-dependent electrical contact resistance at fractal rough surfaces. J Eng Mech:B4015001. doi:10.1061/(ASCE)EM.1943-7889.0000967

  17. Campana C, Persson B, Müser M (2011) Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J Phys Condens Matter 23(8):085001

    Article  Google Scholar 

  18. Pohrt R, Popov VL (2013) Contact stiffness of randomly rough surfaces. Sci Rep 3:3293

    Article  Google Scholar 

  19. Pohrt R, Popov VL (2012) Normal contact stiffness of elastic solids with fractal rough surfaces. Phys Rev Lett 108(10):104301

    Article  Google Scholar 

  20. Yan W, Komvopoulos K (1998) Contact analysis of elastic–plastic fractal surfaces. J Appl Phys 84(7):3617–3624

    Article  Google Scholar 

  21. Jiang S, Zheng Y, Zhu H (2010) A contact stiffness model of machined plane joint based on fractal theory. J Tribol 132(1):011401

    Article  Google Scholar 

  22. Buzio R, Boragno C, Biscarini F, De Mongeot FB, Valbusa U (2003) The contact mechanics of fractal surfaces. Nat Mater 2(4):233–236

    Article  Google Scholar 

  23. Stifter T, Marti O, Bhushan B (2000) Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys Rev B 62(20):13667

    Article  Google Scholar 

  24. Putman CA, Igarashi M, Kaneko R (1995) Single‐asperity friction in friction force microscopy: the composite‐tip model. Appl Phys Lett 66(23):3221–3223

    Article  Google Scholar 

  25. Mulvihill D, Brunskill H, Kartal M, Dwyer-Joyce R, Nowell D (2013) A comparison of contact stiffness measurements obtained by the digital image correlation and ultrasound techniques. Exp Mech 53(7):1245–1263

    Article  Google Scholar 

  26. Lorenz B, Persson B (2009) Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. J Phys Condens Matter 21(1):015003

    Article  Google Scholar 

  27. Hanaor D, Einav I, Gan Y (2013) Effects of surface structure deformation on static friction at fractal interfaces. Géotech Lett 3(2):52–58

    Article  Google Scholar 

  28. Chandrasekar S, Eriten M, Polycarpou A (2013) An improved model of asperity interaction in normal contact of rough surfaces. J Appl Mech 80(1):011025

    Article  Google Scholar 

  29. Hanaor DA, Gan Y, Einav I (2015) Contact mechanics of fractal surfaces by spline assisted discretisation. Int J Solids Struct 59:121–131

    Article  Google Scholar 

  30. Shankar S, Mayuram M (2008) Effect of strain hardening in elastic–plastic transition behavior in a hemisphere in contact with a rigid flat. Int J Solids Struct 45(10):3009–3020

    Article  MATH  Google Scholar 

  31. Daphalapurkar N, Wang F, Fu B, Lu H, Komanduri R (2011) Determination of mechanical properties of sand grains by nanoindentation. Exp Mech 51(5):719–728

    Article  Google Scholar 

  32. Ladani L, Harvey E, Choudhury S, Taylor C (2013) Effect of varying test parameters on elastic–plastic properties extracted by nanoindentation tests. Exp Mech 53(8):1299–1309

    Article  Google Scholar 

  33. Persson B, Albohr O, Tartaglino U, Volokitin A, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys Condens Matter 17(1):R1

    Article  Google Scholar 

  34. Thomas T (1998) Trends in surface roughness. Int J Mach Tools Manuf 38(5):405–411

    Article  Google Scholar 

  35. Go J-Y, Pyun S-I (2006) Fractal approach to rough surfaces and interfaces in electrochemistry. Modern Aspects of Electrochemistry. Springer, US, pp 167–229

    Google Scholar 

  36. Ciavarella M, Demelio G, Barber J, Jang YH (2000) Linear elastic contact of the Weierstrass profile. Proc R Soc Lond Ser A Math Phys Sci 456(1994):387–405

    Article  MathSciNet  MATH  Google Scholar 

  37. Dubuc B, Zucker S, Tricot C, Quiniou J, Wehbi D (1989) Evaluating the fractal dimension of surfaces. Proc R Soc Lond Ser A Math Phys Sci 425(1868):113–127

    Article  MathSciNet  MATH  Google Scholar 

  38. De Santis A, Fedi M, Quarta T (1997) A revisitation of the triangular prism surface area method for estimating the fractal dimension of fractal surfaces. Ann Geophys 40(4):811–821

    Google Scholar 

  39. Lu K, Lu J (2004) Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A 375:38–45

    Article  Google Scholar 

  40. Roland T, Retraint D, Lu K, Lu J (2007) Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater Sci Eng A 445:281–288

    Article  Google Scholar 

  41. Proust G, Retraint D, Chemkhi M, Roos A, Demangel C (2015) Electron backscatter diffraction and transmission Kikuchi diffraction analysis of an austenitic stainless steel subjected to surface mechanical attrition treatment and plasma nitriding. Microsc Microanal 21(04):919–926

    Article  Google Scholar 

  42. Liu Y, Jin B, Lu J (2015) Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment. Mater Sci Eng A 636:446–451

    Article  Google Scholar 

  43. Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:5961

    Article  Google Scholar 

  44. Douketis C, Wang Z, Haslett TL, Moskovits M (1995) Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Phys Rev B 51(16):11022

    Article  Google Scholar 

  45. Zahn W, Zösch A (1999) The dependence of fractal dimension on measuring conditions of scanning probe microscopy. Fresenius J Anal Chem 365(1–3):168–172

    Article  Google Scholar 

  46. Kim J-Y, Baltazar A, Rokhlin S (2004) Ultrasonic assessment of rough surface contact between solids from elastoplastic loading–unloading hysteresis cycle. J Mech Phys Solids 52(8):1911–1934

    Article  Google Scholar 

  47. Pei L, Hyun S, Molinari J, Robbins MO (2005) Finite element modeling of elasto-plastic contact between rough surfaces. J Mech Phys Solids 53(11):2385–2409

    Article  MATH  Google Scholar 

  48. Kadin Y, Kligerman Y, Etsion I (2006) Unloading an elastic–plastic contact of rough surfaces. J Mech Phys Solids 54(12):2652–2674

    Article  Google Scholar 

  49. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583

    Article  Google Scholar 

  50. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20

    Article  Google Scholar 

  51. Etsion I, Kligerman Y, Kadin Y (2005) Unloading of an elastic–plastic loaded spherical contact. Int J Solids Struct 42(13):3716–3729

    Article  MATH  Google Scholar 

  52. Cheng C-M, Cheng Y-T (1997) On the initial unloading slope in indentation of elastic–plastic solids by an indenter with an axisymmetric smooth profile. Appl Phys Lett 71(18):2623–2625

    Article  Google Scholar 

  53. Bolshakov A, Pharr G (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13(04):1049–1058

    Article  Google Scholar 

  54. Restagno F, Crassous J, Cottin-Bizonne C, Charlaix E (2002) Adhesion between weakly rough beads. Phys Rev E 65(4):042301

    Article  Google Scholar 

  55. Kim J, Ryba E (2001) The effect of polyol OH number on the bond strength of rigid polyurethane on an aluminum substrate. J Adhes Sci Technol 15(14):1747–1762

    Article  Google Scholar 

  56. Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16(8):1159

    Article  Google Scholar 

  57. Oh H-J, Jang K-W, Chi C-S (1999) Impedance characteristics of oxide layers on aluminium. Bull Kor Chem Soc 20(11):1341

    Google Scholar 

  58. Campbell T, Kalia RK, Nakano A, Vashishta P, Ogata S, Rodgers S (1999) Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers. Phys Rev Lett 82(24):4866

    Article  Google Scholar 

  59. Putignano C, Afferrante L, Carbone G, Demelio G (2012) The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J Mech Phys Solids 60(5):973–982

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research from the Australian Research Council through grants DE130101639 and Civil Engineering Research Development Scheme (CERDS) in School of Civil Engineering at The University of Sydney is greatly appreciated. The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Australian Centre for Microscopy & Microanalysis at the University of Sydney where the SEM images were taken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, C., Gan, Y., Hanaor, D. et al. The Role of Surface Structure in Normal Contact Stiffness. Exp Mech 56, 359–368 (2016). https://doi.org/10.1007/s11340-015-0107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0107-0

Keywords

Navigation