Skip to main content

Advertisement

Log in

Electromechanical Linear Contribution at Fracture of Crack on Pre-notched Piezoelectric Ceramics Under Double Torsion

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The linear contribution of total energy release rate for fracture of ferroelectric materials was studied based on the linear theoretic framework of piezoelectricity using the double-torsion technique. It was found that three linear contributions of the total energy release rate for piezoelectric material are definitely associated with pure mechanical compliance, electromechanical compliance, and pure electrical capacitance. To confirm the entity of contributions, mechanical and electromechanical compliances were analyzed obtained from result of load vs. displacement measured on each electric field, and electrical capacitance was obtained from property and geometry of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Crack length

a 0 :

Smaller crack length than a

A :

Crack surface area

b :

Notch length from edge of specimen to the loading and supporting line

c L , c T , c A :

Constants of Irwin matrix

c E ij or \( {\overline{c}}_{ij}^E \) :

Elastic stiffness constants measured at a constant electric field

C F e :

Pure electric capacitance

C V m :

Pure mechanical compliance

C E :

Conventional electric capacitance

C M :

Conventional mechanical compliance

C p :

Piezoelectric compliance

\( {\overline{C}}_{xx}^{*} \) :

Shear modulus of transversely isotropic piezoelectric material

\( {\overline{d}}_{ij} \) :

Piezoelectric strain constants

D ii :

Electric displacement components

e :

Constant of Irwin matrix

e ij or ē ij :

Piezoelectric stress constants

E 0 or E :

Applied electric field

E ii :

Electric field components

F :

Applied mechanical force

F int :

Fracture initiation load

G :

Crack driving force or energy release rate

G m :

Pure mechanical contribution of total energy release rate

G e :

Pure electric contribution of total energy release rate

G M :

Conventional mechanical contribution of total energy release rate

G E :

Conventional electric contribution of total energy release rate

G p :

Piezoelectric contribution of total energy release rate

G intr :

Intrinsic toughness

G tip l :

Crack-tip energy release rate

G tot l or G tot :

Total energy release rate in linearly piezoelectric assumption

[H]:

Irwin matrix

K I , K II  , K III :

Mechanical crack tip stress intensity factors

K IV (or K D ):

Crack tip electric displacement intensity factor

L :

Length of specimen

p i :

Eigenvalues

Q :

Electric charge

Q l :

Linear component of electric charge

Q E l :

Pure electrical contribution of linear component of electric charge

Q P l :

Piezoelectric contribution of linear component of electric charge

R s :

Switching process zone

\( {\overline{s}}_{ij}^E \) :

Elastic compliance constants measured at a constant electric field

S :

Width of specimen

S m :

Moment arm in DT test specimen

t :

Thickness of specimen

V :

Applied voltage

[Y]:

Hermitian matrix

∆:

(Load-point) mechanical displacement

Δ l :

Linear component of mechanical displacement

Δ F l :

Pure mechanical contribution of linear component of mechanical displacement

Δ P l :

Piezoelectric contribution of linear component of mechanical displacement

ε ij :

Strain components

θ :

Total angle of twist of torsion bar

κ :

Constant of Irwin matrix

κ ε ij or \( {\overline{\kappa}}_{ij}^{\varepsilon } \) :

Dielectric permittivities under constant strain

\( {\overline{\kappa}}_{ij}^{\sigma } \) :

Dielectric permittivities under constant stress

μ :

Shear modulus of isotropic specimen

Π :

Potential energy

Π l :

Linear part of the potential energy

σ ij :

Stress components

τ = 2 t/ S :

Thickness ratio

ψ(τ):

Finite beam thickness correction factor

References

  1. Rao SS, Sunar M (1994) Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl Mech Rev 47(4):113–123

    Article  Google Scholar 

  2. McHenry KD, Koepke BG (1983) Electric field effects on subcritical crack growth in PZT. Fract Mech Ceram 5:337–352

    Article  Google Scholar 

  3. Yamamoto T, Igarashi H, Okazaki K (1983) Internal stress anisotropies induced by electric field in Lanthanum modified PnTiO3 ceramics. Ferroelectrics 50:273–278

    Article  Google Scholar 

  4. Mehta K, Virkar AV (1990) Fracture mechanism in ferroelectric-ferroelastic lead zirconate titanate ceramics. J Am Ceram Soc 73:567–574

    Article  Google Scholar 

  5. Häusler C, Jelitto H, Neumeister P, Balke H, Schneider GA (2009) Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading. Int J Fract 160:43–54

    Article  Google Scholar 

  6. Tobin AG, Pak YE (1993) Effect of electric field on fracture behavior of PZT ceramics. In: Varadan VK (ed). Proceedings of the 1993 North American conference on smart structures and materials: smart materials 1916:78–86

  7. Park SB, Sun CT (1995) Fracture criteria for piezoelectric ceramics. J Am Ceram Soc 78:1475–1480

    Article  Google Scholar 

  8. Fang D, Zhang ZK, Soh AK, Lee KL (2004) Fracture criteria of piezoelectric ceramics with defects. Mech Mater 36:917–928

    Article  Google Scholar 

  9. Wang HY, Singh RN (1997) Crack propagation in piezoelectric ceramics: effects of applied electric fields. J Appl Phys 81:7471–7479

    Article  Google Scholar 

  10. Fu R, Zhang TY (2000) Effect of an electric field on the fracture toughness of poled lead ziconate titanate ceramics. J Am Ceram Soc 83:1215–1218

    Article  Google Scholar 

  11. Schneider GA (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu Rev Mater Res 37:491–538

    Article  Google Scholar 

  12. Gao H, Zhang TY, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45:491–510

    Article  Google Scholar 

  13. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  14. Zuo JZ, Sih GC (2000) Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theor Appl Fract Mech 34:17–33

    Article  Google Scholar 

  15. Nam BG, Watanabe K (2007) Crack energy density and energy release rate for piezoelectric material. Int J Solids Struct 44:3904–3919

    Article  MATH  Google Scholar 

  16. Nam BG, Watanabe K (2008) Effect of electric boundary conditions on crack energy density and its derivatives for Piezoelectric material. Eng Fract Mech 75:207–222

    Article  Google Scholar 

  17. Watanabe K (1981) New proposal of crack energy density concept as a fundamental fracture mechanics parameter. Bull JSME 24:2059–2066

    Article  Google Scholar 

  18. Shyam A, Lara-Curzio E (2006) The double-torsion testing technique for determination of fracture toughness and slow crack growth behavior of materials: a review. J Mater Sci 41:4093–4104

    Article  Google Scholar 

  19. Shindo Y, Narita F, Mikami M (2005) Double torsion testing and finite element analysis for determining the electric fracture properties of piezoelectric ceramics. J Appl Phys 97(11):114109–114109-7

    Article  Google Scholar 

  20. Sosa HA (1991) Plane problems in piezoelectric media with defects. Int J Solids Struct 28:491–505

    Article  MATH  Google Scholar 

  21. Ricoeur A, Kuna M (2003) Influence of electric fields on the fracture of ferroelectric ceramics. J Eur Ceram Soc 23:1313–1328

    Article  Google Scholar 

  22. McMeeking RM (2004) The energy release rate for a Griffith crack in a piezoelectric material. Eng Fract Mech 71:1149–1163

    Article  Google Scholar 

  23. Jelitto H, Felten F, Swain MV, Balke H, Schneider GA (2007) Measurement of the total energy release rate for cracks in PZT under combined mechanical and electrical loading. ASME J Appl Mech 74:1197–1211

    Article  Google Scholar 

  24. Sakai M, Bradt RC (1986) Graphical methods for determining the nonlinear fracture parameters of silica and graphite refractory composites. Fourth Int Symp Fract Mech Ceram 7:127–142

    Article  Google Scholar 

  25. Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40:739–765

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuna M (1998) Finite element analyses of crack problems in piezoelectric structures. Comput Mater Sci 13:67–80

    Article  Google Scholar 

  27. Jelitto H, Keβler H, Schneider GA, Balke H (2005) Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads. J Eur Ceram Soc 25:749–757

    Article  Google Scholar 

  28. Fang DN, Liu B, Hwang KC (1999) Energy analysis on fracture of ferroelectric ceramics. Int J Fract 100:401–408

    Article  Google Scholar 

  29. Tait RB, Fry PR, Garrett GG (1987) Review and evaluation of the double-torsion technique for fracture toughness and fatigue testing of brittle materials. Exp Mech 27:14–22

    Article  Google Scholar 

  30. Williams DP, Evans AG (1973) Application of a simple method for studying slow crack growth. J Test Eval 1:264–270

    Article  Google Scholar 

  31. Fuller ER Jr (1979) Fracture mechanics applied to brittle materials. ASTM STP 678 edited by Freiman SW. 3–18

  32. Evans AG (1972) A method for evaluating the time-dependent failure characteristics of brittle materials and its application to polycrystalline alumina. J Mater Sci 7:1137–1146

    Article  Google Scholar 

  33. Trantina GG (1977) Stress analysis of the double-torsion specimen. J Am Ceram Soc 60:338–341

    Article  Google Scholar 

  34. Anderson TL (1995) Fracture mechanics. Fundamentals and applications, 2nd edn. CRC Press, London

    MATH  Google Scholar 

  35. Heyer V, Schneider GA, Balke H, Drescher J, Bahr HA (1998) A fracture criterion for conducting cracks in homogeneously poled piezoelectric PZT-PIC 151 ceramics. Acta Mater 46(18):6615–6622

    Article  Google Scholar 

  36. Sosa HA, Pak YE (1990) Three-dimensional eigenfunction analysis of a crack in a piezoelectric material. Int J Solids Struct 26:1–15

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS-P06118), expressed high gratitude for Prof. Watanabe Katsuhiko’s whole attention and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-W. Kim.

Appendix A: Irwin Matrix

Appendix A: Irwin Matrix

The eigenvalues obtained by solution of problem in x 1 − x 2 plane for C-82 piezoelectric ceramic with poling direction of positive x 2-axis are

$$ \left\{p\right\}=\left\{{p}_1,\kern0.5em {p}_2,\kern0.5em {p}_3,\kern0.5em {p}_4\right\}=\left\{0.794797\mathrm{i},\kern0.5em 0.97323\mathrm{i},\kern0.5em 1.07225\mathrm{i},\kern0.5em 1.63569\mathrm{i}\right\} $$
(31)

where \( \mathrm{i}=\sqrt{-1} \).

When a crack was existed on piezoelectric materials, a Hermitian matrix, [Y], and a Irwin matrix, [H], can be defined as shown below [25]:

$$ \left[Y\right]=\left[\begin{array}{cccc}\hfill 0.0231538\hfill & \hfill 0.0107805\mathrm{i}\hfill & \hfill 0\hfill & \hfill -0.0122096\mathrm{i}\hfill \\ {}\hfill \hbox{-} 0.0107805\mathrm{i}\hfill & \hfill 0.0210542\hfill & \hfill 0\hfill & \hfill 0.0175581\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0.0459781\hfill & \hfill 0\hfill \\ {}\hfill 0.0122096\mathrm{i}\hfill & \hfill 0.0175581\hfill & \hfill 0\hfill & \hfill \hbox{-} 0.0362154\hfill \end{array}\right] $$
(32)
$$ \left[H\right]=\left[\begin{array}{cccc}\hfill 0.0463076\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0.0421084\hfill & \hfill 0\hfill & \hfill 0.0351163\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0.0919562\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0.0351163\hfill & \hfill 0\hfill & \hfill \hbox{-} 0.0724307\hfill \end{array}\right] $$
(33)

By Sosa and Pak [36], the matrix, [H], has following structure:

$$ \left[H\right]=\left[\begin{array}{cccc}\hfill 2/{c}_L\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 2/{c}_T\hfill & \hfill 0\hfill & \hfill 2/e\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 2/{c}_A\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 2/e\hfill & \hfill 0\hfill & \hfill -2/\kappa \hfill \end{array}\right] $$
(34)

Therefore, parameters, c L , c T , c A , e, and κ can be numerically calculated as shown in Tables 1 and 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, DC., Kim, TG. & Kim, DW. Electromechanical Linear Contribution at Fracture of Crack on Pre-notched Piezoelectric Ceramics Under Double Torsion. Exp Mech 55, 1729–1744 (2015). https://doi.org/10.1007/s11340-015-0081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0081-6

Keywords

Navigation