Skip to main content
Log in

Estimation of the Elastic Properties of Polymer Plates Using a Structured Light Technique

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

An experimental device for determining Young’s modulus of polymer plates is presented. Two sets of polymer blends were investigated. First samples were made of ethylene propylene diene (EPDM), high density polyethylene (HDPE), and meleic anhydride grafting on polyethylene (PE-MA) reinforced with glass fiber. The second set of samples was made of low density polyethylene (LDPE) reinforced with nylon fiber. Young’s modulus of a circular polymeric plate under biaxial stress was determined by measuring its out-of-plane displacement. This test is also known as bulge test. Values of Young’s modulus of the polymer plates were compared to those obtained from standard uniaxial tensile tests. Biaxial stress causes tension in all internal reinforcing fibers of the samples, in contrast tensile tests that cause tension mainly in fibers aligned with the applied force. Out-of-plane displacement was measured applying a laser triangulation setup based on a projected laser line and a CCD camera. A mathematical model for plates under the bulge test was then used in Young’s modulus calculations using out-of-plane displacement and plate dimensions. It is proved that the bulge test is more sensitive to reinforcement fiber compared to the standard uniaxial tensile test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sethi S, Chandra RB (2015) Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability. Adv Colloid Interf Sci 217:43–67. doi:10.1016/j.cis.2014.12.005

    Article  Google Scholar 

  2. ASTM Standard D638–10 (2010) Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken

    Google Scholar 

  3. ASTM Standard D882–12 (2012) Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International, West Conshohocken

    Google Scholar 

  4. ASTM Standard guide D4762-11a (2011) Standard guide for polymer matrix composite materials. ASTM International, West Conshohocken

    Google Scholar 

  5. Czichos H, Saito T, Smith L (2011) Springer Handbook of Metrology and Testing. Springer, Heidelberg. doi:10.1007/978-3-642-16641-9

    Book  Google Scholar 

  6. Altan T, Palaniswamy H, Bortot P, Heidl W, Bechtold A (2006) Determination of sheet material properties using biaxial bulge tests. Proc. 2nd International Conference on Accuracy in Forming Technology, Germany

    Google Scholar 

  7. International Standard ISO 16808:2014(E) (2014) Metallic materials – Sheet and strip – Determination of biaxial stress–strain curve by means of bulge test with optical measuring systems. Switzerland

  8. Lee HS, Yoon JH, Yoo JT (2012) An experimental study on elevated temperature biaxial bulge test. Adv Mater Res 430–432:539–542. doi:10.4028/www.scientific.net/AMR.430-432.539

    Article  Google Scholar 

  9. Vucetic M, Bouguecha A, Peshekhodov I, Götze T, Huinink T, Friebe H, Möller T, Behrens BA (2011) Numerical validation of analytical biaxial true stress—true strain curves from the bulge test. Intl Conf Workshop Numerical Simulation Sheet Metal Forming Process 1383:107–114. doi:10.1063/1.3623599

    Google Scholar 

  10. Chuanwei L, Zhanwei L, Huimin X (2014) Novel scanning electron microscope bulge test technique integrated with loading function. Rev Sci Instrum 85(10):103709. doi:10.1063/1.4897623

    Article  Google Scholar 

  11. Dan W, Huimin X, Chuanwei L, Rong W (2014) Application of digital phase-shifting method in 3D deformation measurement at micro-scale by SEM. Meas Sci Technol 25(12):125002. doi:10.1088/0957-0233/25/12/125002

    Article  Google Scholar 

  12. Vlassak JJ, Nix WD (1992) A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J Mater Res 7(12):3242–3249. doi:10.1557/JMR.1992.3242

    Article  Google Scholar 

  13. Xu D, Liehti KM (2010) Bulge testing transparent thin films with Moiré deflectometry. Exp Mech 50(2):217–225. doi:10.1007/s11340-009-9291-0

    Article  Google Scholar 

  14. Çakmak UD, Kallaí I, Major Z (2014) Temperature dependent bulge test for elastomers. Mech Res Commun 60:27–32. doi:10.1016/j.mechrescom.2014.05.006

    Article  Google Scholar 

  15. Çakmak UD, Major Z (2013) Experimental thermomechanical analysis of elastomers under uni- and biaxial tensile stress state. Exp Mech 53(9):653–663. doi:10.1007/s11340-013-9820-8

    Google Scholar 

  16. Galliot C, Luchsinger RH (2011) Uniaxial and biaxial mechanical properties of ETFE foils. Polym Test 30:356–365. doi:10.1016/j.polymertesting.2011.02.004

    Article  Google Scholar 

  17. Jones A, Shaw J, Wineman A (2006) An experimental facility to measure the chemorheological response of inflated elastomeric membranes at high temperature. Exp Mech 46:579–587. doi:10.1007/s11340-006-9111-8

    Article  Google Scholar 

  18. Lăzărescu L, Comşa DS, Nicodim I, Ciobanu I, Banabic D (2012) Characterization of plastic behaviour of sheet metals by hydraulic bulge test. Trans Nonferrous Met Soc Chin 22:s275–s279. doi:10.1016/S1003-6326(12)61719-1

    Article  Google Scholar 

  19. Li Y, Nemes JA, Derdouri A (2000) Optical 3-D dynamic measurement system and its application to polymer membrane inflation tests. Opt Lasers Eng 33:261–276

    Article  Google Scholar 

  20. Lin CS, Horng TL, Chen JH, Chen KH, Wu JJ, Chen CY, Ma SH (2014) Mechanical properties measurement of polymer films by bulge test and fringe projection. Adv Mater Sci Eng ID170279. doi:10.1155/2014/170279

  21. Machado G, Favier D, Chagnon G (2011) Membrane curvatures and stress–strain full fields of axisymmetric bulge tests from 3D-DIC measurements. Theory and validation on virtual and experimental results. Exp Mech 52(7):865–880. doi:10.1007/s11340-011-9571-3

    Article  Google Scholar 

  22. Mott PH, Roland CM, Hassan SE (2003) Strains in an inflated rubber sheet. Rubber Chem Technol 76(2):326–333. doi:10.5254/1.3547746

    Article  Google Scholar 

  23. Reuge N, Schmidt FM, Le Maoult Y, Rachik M, Abbé F (2001) Elastomer biaxial characterization using bubble inflation technique. Polym Eng Sci 41(3):522–531. doi:10.1002/pen.10749

    Article  Google Scholar 

  24. Sasso M, Palmieri G, Chiappini G, Amodio D (2008) Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching test based on optical methods. Polym Test 27(8):995–1004. doi:10.1016/j.polymertesting.2008.09.001

    Article  Google Scholar 

  25. Shaw JA, Jones AS, Wineman AS (2005) Chemorheological response of elastomers at elevated temperatures: experiments and simulations. J Mech Phys Solids 53(12):2758–2793. doi:10.1016/j.jmps.2005.07.004

    Article  MATH  Google Scholar 

  26. Treloar LRG (1944) Strains in an inflated rubber sheet and the mechanism of bursting. Rubber Chem Technol 17(4):957–967. doi:10.5254/1.3546716

    Article  Google Scholar 

  27. Wineman A, Shaw J (2005) Influence of thermally induced chemorheological changes on the inflation of spherical elastomeric membranes. J Elast 80:73–95. doi:10.1007/s10659-005-9020-6

    Article  MATH  MathSciNet  Google Scholar 

  28. Zitzumbo R, Ornelas-Rodriguez FJ, Lopez M, Alonso S, Yanez J, Avalos F, Ortiz JC, Zizumbo A (2006) Laser technology application: deformation and elastic recovery of semi- crystalline polymers. Eur Polym J 42:1298–1304. doi:10.1016/j.eurpolymj.2005.12.016

    Article  Google Scholar 

  29. Charalambides M, Wanigasooriya L, Williams G, Chakrabarti S (2002) Biaxial deformation of dough using the bubble inflation technique. I. Experimental. Rheol Acta 41(6):532–540. doi:10.1007/s00397-002-0242-2

    Article  Google Scholar 

  30. Moraes C, Simmons C, Sun Y (2013) System, apparatus and method for applying mechanical force to a material. United States patent 8557582 B2

  31. Dong C (2012) A regression model for analysing the non-linearity of laser triangulation probes. Int J Adv Manuf Technol 59:691–695. doi:10.1007/s00170-011-3517-x

    Article  Google Scholar 

  32. Vukašinovic N, Bracun D, Mozina J (2012) A new method for defining the measurement-uncertainty model of CNC laser-triangulation scanner. Int J Adv Manuf Technol 58:1097–1104. doi:10.1007/s00170-011-3467-3

    Article  Google Scholar 

  33. Bouguet JY (2013) Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html. Accessed 07 February 2014

  34. Zhang Z (1999) Flexible camera calibration by viewing a plane from unknown orientations. Proc IEEE Intl Conf Comput Vis 1:666–673. doi:10.1109/ICCV.1999.791289

    Google Scholar 

  35. Horaud R, Monga O (1995) Vision par ordinateur: outils fondamentaux. Deuxième edition. Editions Hermès. 425

  36. Gorthi SS, Rastogi P (2010) Fringe projection techniques: whither we are? Opt Lasers Eng 48:133–140. doi:10.1016/j.optlaseng.2009.09.001

    Article  Google Scholar 

  37. Cyganek B, Siebert JP (2009) An introduction to 3D computer vision techniques and algorithms. John Wiley & Sons. ISBN: 978-0-470-01704-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-R. Rojas-Ramirez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Ramirez, SR., Ornelas-Rodriguez, FJ., Hurtado-Ramos, J.B. et al. Estimation of the Elastic Properties of Polymer Plates Using a Structured Light Technique. Exp Mech 55, 1465–1474 (2015). https://doi.org/10.1007/s11340-015-0062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0062-9

Keywords

Navigation