Skip to main content
Log in

Influence of Machining Process and Machining Induced Surface Roughness on Mechanical Properties of Continuous Fiber Composites

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the mechanical behavior in quasi-static tests (compression and inter-laminar shear) of two composite materials machined by different processes. First, the impact of the variation of average surface roughness (Ra) and the machining process is studied for both materials and for each stress. The results of compression and inter laminar shear tests show that the mechanical behavior is greatly affected by the surface roughness and the machining temperatures. Secondly the effect of machining processes is detailed. The experimental results show the major dependence of the mechanical behavior on the machining process. The results obtained on the two materials being different, this work sheds light on the influence of the composition of composite materials on the surface defects and the mechanical behavior of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Colligan K, Ramulu M (1991) Delamination in surface plies of graphite/epoxy caused by the edge trimming process. GA, Dec. 1–6, (A93-32021 12–37), p. 113–125. 112th ASME Winter Annual Meeting, Atlanta

  2. Guegan P (1994) Contribution à la qualification de l’usinage de matériaux composites à matrice organique. PHD thesis n 2025. Génie Mécanique. E.C. Nantes

  3. Ghidossi P, El Mansori M, Pierron F (2004) Edge machining effects on the failure of polymer matrix composite coupons. Compos Part A 35(7/8):989–999

    Article  Google Scholar 

  4. Ghidossi P, El Mansori M, Pierron F (2005) Influence of specimen preparation by machining on the failure of polymer matrix off-axis tensile coupons. Compos Sci Technol 66(11/12):1857–1872

    Google Scholar 

  5. Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fibre-reinforced plastics using design experiments. J Mater Process Technol 160(2):160–167

    Article  Google Scholar 

  6. Haddad M, Zitoune R, Eyma F, Castanié B (2013) Machinability and surface quality during high speed trimming of multi directional CFRP. Int J Mach Mach Mater 13(2/3):289–310

    Google Scholar 

  7. Janardhan P, Sheikh-Ahmad JY Cheraghi H (2006) Edge trimming of CFRP with diamond interlocking tools. Proceedings of Aerospace Manufacturing and Automated Fastening Conference. ASE 01(3173): 11–14. Toulouse, France

  8. Ahmad JS (2009) Machining of polymer composites. Springer, ISBN 978-0-387- 35539–9

  9. Wang DH, Ramulu M, Arola D (1995) Orthogonal cutting mechanisms of graphite/ epoxy. Part I: unidirectional laminate. Int J Mach Tools Manuf 35(12):1623–1638

    Article  Google Scholar 

  10. Wang DH, Ramulu M, Arola D (1995) Orthogonal cutting mechanisms of graphite/ epoxy. Part II: multi-directional laminate. Int J Mach Tools Manuf 35(12):1639–1648

    Article  Google Scholar 

  11. Caprino G, Santo L, Nele L (1998) Interpretation of size effect in orthogonal machining of composite materials. Part I: unidirectional glass-fibre-reinforced plastics. Compos Part A 29(8):893–897

    Article  Google Scholar 

  12. Wang XM, Zhang LC (2003) An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int J Mach Tools Manuf 43(10):1015–1022

    Article  Google Scholar 

  13. Kalla D, Sheikh-Ahmad JY, Twomey J (2010) Prediction of cutting forces in helical end milling fibre reinforced polymers. Int J Mach Tools Manuf 50(10):882–891

    Article  Google Scholar 

  14. Hintze W, Hartmann D, Schütte C (2011) Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs)—an experimental study. Compos Sci Technol 71(15):1719–1726

    Article  Google Scholar 

  15. Zitoune R, Krishnaraj V, Almabouacif BS, Collombet F, Sima M, Jolin A (2011) Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos Part B 44(3):1480–1488

    Google Scholar 

  16. Davim JP, Reis P (2003) Study of delamination in drilling carbon fibre reinforced plastics (CFRP) using design experiments. Compos Struct 59(4):481–487

    Article  Google Scholar 

  17. Shyha I, Soo SL, Aspinwall D, Bradley S (2010) Effect of laminate configuration and feed rate on cutting performance when drilling holes in carbon fibre reinforced plastic composites. J Mater Process Technol 210(8):1023–1034

    Article  Google Scholar 

  18. Kim D, Ramulu M, Doan X (2005) Influence of consolidation process on the drilling performance and machinability of PIXA-M and PEEK thermoplastic composites. J Thermoplast Compos Mater 18(3):195–217

    Article  Google Scholar 

  19. El-Sonbaty I, Khashaba UA, Machaly T (2004) Factors affecting the machinability of GFR/epoxy composites. Compos Struct 63(3/4):329–338

    Article  Google Scholar 

  20. Zitoune R, Collombet F, Guillermo Hernáiz L (2008) Experimental and analytical study of the influence of HexFit glass fibre composite manufacturing process on delamination during drilling. IJMMM 3(3/4):326–342

    Article  Google Scholar 

  21. Arola D, Ramulu M (1997) Net shape manufacturing and the performance of polymer composites under dynamic loads. Exp Mech 37(4):379–385

    Article  Google Scholar 

  22. Arola D, Ramulu M (1998) Net shape machining and the process-dependence failure of Fibre reinforced plastics under static loads. Exp Mech 20(4):210–220

    Google Scholar 

  23. Chen F, Siores E (2001) The effect of cutting jet variation on striation formation in abrasive water jet cutting. Int J Mach Tools Manuf 10(41):1479–1486

    Article  Google Scholar 

  24. Ferrendier S (2001) Influence de l’évolution granulométrique des abrasifs sur l’enlèvement de matière lors de la découpe par jet d’eau abrasif. PHD thesis, école nationale supérieure d’arts et métiers

  25. Hocheng H (1989) A failure analysis of water jet drilling in composite laminates. Int J Mach Tools Manuf 30(3):423–429

    Article  Google Scholar 

  26. Haddad M, Zitoune R, Eyma F, Castanié B (2014) Study of the surface defects and dust generated during trimming of CFRP: influence of tool geometry, machining parameters and cutting speed range. Compos Part A 66:142–154

    Article  Google Scholar 

  27. Ramulu M, Jenkins MG, Guo Z (2001) Abrasive water jet machining mechanisms in continuous-fibre ceramic composites. J Compos Technol Res 23(2):82–91

    Article  Google Scholar 

  28. Wang J (1999) Abrasive water jet machining of polymer matrix composites—cutting performance. erosive process and predictive models. Int J Adv Manuf Technol 15(10):757–768

    Article  Google Scholar 

  29. Haddad M, Zitoune R, Bougherara H, Eyma F, Castanié B (2014) Study of trimming damages of CFRP structures in function of the machining processes and their impact on the mechanical behavior. Compos Part B 57:136–143

    Article  Google Scholar 

  30. Colligan K, Ramulu M, Arola D (1993) Investigation of edge quality and ply delamination in abrasive waterjet machining of graphite/epoxy. Mach Adv Compos ASME ASME Publ N Y 66:167–186

    Google Scholar 

  31. Arola D, Ramulu M (1994) Machining induced surface texture effects on the flexural properties of graphite/epoxy laminates. Composites 25(8):822–834

    Article  Google Scholar 

  32. Ramulu M, Colligan K (2005) Edge finishing and delamination effects induced during abrasive waterjet machining on the compression strength of a graphite/epoxy composite. Paper Imece2005-82346, Proceedings Of Imece: ASME International Mechanical Engineering Congress & Exposition November 5–11, 2005, Orlando, Florida

  33. Briggs TM, Ramulu M (2010) Effect of AWJ machining processes on flexural properties of CFRP composites. TMS Proceedings (CD) on Manufacturing Processes, Feb 15-18th, 2010, Seattle

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the French Ministry of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haddad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, M., Zitoune, R., Eyma, F. et al. Influence of Machining Process and Machining Induced Surface Roughness on Mechanical Properties of Continuous Fiber Composites. Exp Mech 55, 519–528 (2015). https://doi.org/10.1007/s11340-014-9967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9967-y

Keywords

Navigation