Skip to main content

Advertisement

Log in

Evaluation of the High-Speed Drilling Technique for the Incremental Hole-Drilling Method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The incremental hole-drilling method is frequently used for residual stress depth distribution analyses, due to its fast and economical experimental execution. Depending on the planned use of the component, the drilled hole that is made to measure the residual stress can often be repaired or ignored if it does not affect the intended use of the part. Nevertheless an important experimental issue and assumption is the introduction of an ideal cylindrical hole into the component without additional plastic deformation. Although high-speed drilling is well established the consequences of the resulting hole geometries compared to ideal assumptions are not well known. Therefore, a detailed comparison between different bits and drilling techniques was carried out and is discussed in this paper in order to detect the best experimental conditions and to find out reasons especially for the lack of accuracy of the hole-drilling method for the first increments close to the specimens surface. It comes out that the orbital drilling with common used six-blade bits results in the best compromise of an ideal cylindrical hole and centricity to the center of the strain gage rosette. In the case of conventional drilling the hole geometry differs from the ideal one if six-blade bits were used due to the influence of chamfers at the cutting edges and a non 180° plane end face and also in the case of a two-blade bit due to a non 180° plane end face and the tendency to more eccentric holes. Diamond bits cannot be recommended under all tested conditions due to their geometrical undefined shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mathar J (1934) Determination of initial stresses by measuring the deformation around drilled holes. Trans ASME 56(4):249–254

    MathSciNet  Google Scholar 

  2. Altrichter S (1960) Die mathematischen Grundlagen der Eigenspannungsmessung mit dem Bohrlochverfahren. ZIS-Mitt 12:843–854

    Google Scholar 

  3. Soete W, Vancrombrugge R (1950) An industrial method for the determination of residual stresses. SESA Proc 8(1):17–28

    Google Scholar 

  4. Münker J (1995) Untersuchung und Weiterentwicklung der Auswertungsmethoden für teilzerstörende Eigenspannungsmessverfahren. Dissertation, Universität-Gesamthochschule Gießen

  5. Kelsey RA (1956) Measuring non-uniform residual stresses by the hole-drilling method. SESA Proc 14(1):181–194

    Google Scholar 

  6. Schwarz T (1996) Beitrag zur Eigenspannungsermittlung an isotropen, anisotropen sowie inhomogenen, schichtweise aufgebauten Werkstoffen mittels der Bohrlochmethode und Ringkernverfahren. Dissertation, MPA Stuttgart

  7. Flaman MT (1982) Brief investigation of induced drilling stresses in the center-hole method of residual-stress measurement. Exp Mech 22(1):26–30. doi:10.1007/BF02325700

    Article  Google Scholar 

  8. Flaman MT, Herring JA (1986) SEM/ASTM round-robin residual-stress-measurement study – Phase 1. Exp Tech 10(5):23–25. doi:10.1111/j.1747-1567.1986.tb00935.x

    Article  Google Scholar 

  9. Yavelak J (1985) Bulk-zero stress standard-ALSI 1018 carbon-steel specimens. Exp Tech 9(4):38–41

    Article  Google Scholar 

  10. ASTM E837-08 (2008) Standard test method for determining residual stresses by the hole-drilling strain-gage method

  11. Bijak-Zochowski M (1978) A semidestructive method of measuring residual stresses. VDI-Berichte 313

  12. Rendler J, Vigness I (1966) Hole-drilling strain-gage method of measuring residual stresses. Exp Mech 6(12):577–586. doi:10.1007/BF02326825

    Article  Google Scholar 

  13. Niku-Lari A, Lu J, Flavenot JF (1985) Measurement of residual stress distribution by the incremental hole-drilling method. Exp Mech 25(2):175–185. doi:10.1007/BF02328809

    Article  Google Scholar 

  14. Scadafi M, Valentini E, Zuccarello B (2008) Effect of the hole-bottom fillet radius on residual stress analysis by the hole-drilling method. ICRS-8 The 8th International Conference on Residual Stress – Denver:263–270

  15. Steinzig M, Ponslet E (2003) Residual stress measurement using the hole-drilling method and laser speckle interferometry: Part I. Exp Tech 27(3):43–46. doi:10.1111/j.1747-1567.2003.tb00114.x

    Article  Google Scholar 

  16. Steinzig M, Ponslet E (2003) Residual stress measurement using the hole-drilling method and laser speckle interferometry Part II: analysis technique. Exp Tech 27(4):17–21. doi:10.1111/j.1747-1567.2003.tb00114.x

    Article  Google Scholar 

  17. Steinzig M, Ponslet E (2003) Residual stress measurement using the hole-drilling method and laser speckle interferometry Part III: analysis technique. Exp Tech 27(5):45–48. doi:10.1111/j.1747-1567.2003.tb00130.x

    Article  Google Scholar 

  18. Steinzig M, Ponslet E (2003) Residual stress measurement using the hole-drilling method and laser speckle interferometry Part IV: measurement accuracy. Exp Tech 27(6):59–63. doi:10.1111/j.1747-1567.2003.tb00141.x

    Article  Google Scholar 

  19. Nelson DV (2010) Residual stress determination by hole-drilling combined with optical methods. Exp Mech 50(2):145–158. doi:10.1007/s11340-009-9329-3

    Article  Google Scholar 

  20. Schajer GS, Tootoonian M (1995) Enhanced sensitivity residual-stress measurements using taper-hole-drilling. Exp Mech 35(2):124–129. doi:10.1007/BF02326469

    Article  Google Scholar 

  21. Pfeiffer W, Wenzel J (2007) The multiple-incremental hole-drilling method for determination of measurement uncertainties of residual stress measurements using the hole-drilling method. (ed) Proc. Physics meets industry, expert verlag, Renningen:43–44

  22. McGrath PJ, Hattingh DG, James MN, Wedderburn IN (2002) A novel 8-element gauge for residual stress assessment using the high-speed centre hole-drilling method. SAIMechE Res Dev J 18(1):1–6, ISSN 0257–9669

    Google Scholar 

  23. Cordiano HV, Salerno VL (1969) Study of residual stresses in linearly varying biaxial-stress fields. Exp Mech 9(1):17–24

    Article  Google Scholar 

  24. Scafidi M, Valentini E, Zuccarello B (2011) Error and uncertainty analysis of the residual stresses computed by using the hole-drilling method. Strain 47(4):301–312. doi:10.1111/j.1475-1305.2009.00688.x

    Article  Google Scholar 

  25. Beghini M (2010) Evaluating non-uniform residual stress by the hole-drilling method with concentric and eccentric holes. Part II: application of the influence functions to the inverse problem. Strain 46(4):337–346. doi:10.1111/j.1475-1305.2009.00684.x

    Article  Google Scholar 

  26. Sánchez-Beitia S, Schueremans L (2008) The hole-drilling technique for on site deduction of the stresses states in stone masonry by using eight strain gages. Elsevier 23(5):2041–2046

    Google Scholar 

  27. Liu A (2005) Mechanics and mechanisms of fracture. ASM, USA

    Google Scholar 

  28. Stockmann M (2000) Mikromechanische Analyse der Wirkungsmechanismen elektrischer Dehnungsmessstreifen. Habilitation, Universität Chemnitz

  29. Hufnagel K (2007) Numerische Simulation von Dehnungsmessstreifen. Messtechnische Briefe

  30. Fischer FD, Hinteregger E, Leoben F, Rammerstorfer FG (1990) Numerische Simulation einer experimentellen Spannungsanalyse. Materialprüfung 32(6):181–185

    Google Scholar 

  31. Schajer GS (1993) Use of displacement data to calculate strain gauge response in non-uniform strain fields. Strain 29(1):9–13. doi:10.1111/j.1475-1305.1993.tb00820.x

    Article  Google Scholar 

  32. Nau A, Scholtes B (2012) Experimental and numerical strategies to consider hole eccentricity for residual stress measurement with the hole drilling method. Mater Test 54(5):1–8

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the Federal Ministry of Economics and Technology (BMWi) which made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nau, A., Scholtes, B. Evaluation of the High-Speed Drilling Technique for the Incremental Hole-Drilling Method. Exp Mech 53, 531–542 (2013). https://doi.org/10.1007/s11340-012-9641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9641-1

Keywords

Navigation