Skip to main content
Log in

Highly Nonlinear Solitary Waves for the Inspection of Adhesive Joints

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this paper we propose the use of highly nonlinear solitary waves (HNSWs) to monitor the curing process of an adhesive layer utilized to bond two aluminum sheets, and to inspect an adhesively-bonded aluminum lap-joint. HNSWs are mechanical waves that can form and travel in highly nonlinear systems, such as a chain of spherical particles where they are generated by means of a mechanical impact. They are characterized by a constant spatial wavelength and possess the important property that their speed, amplitude, and duration can be tuned by modifying the particles’ material or size, or the velocity of the impact. In the study presented in this paper, we investigate the feasibility of HNSWs for the nondestructive testing of adhesively-bonded structures. Two experiments are illustrated. In the first experiment we observe the curing process of a commercial 2-Ton Clear epoxy used to bond two aluminum sheets. In the second experiment, six types of bond quality were created on an aluminum lap-joint. In both experiments we noted that certain characteristics of the HNSWs such as time-of-flight and amplitude are affected by the physical conditions of the test specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peters JJ, Barnard DJ, Hudelson NA, Simpson TS, Hsu DK (2000) A prototype tap test imaging system: Initial field test results. Rev Prog Quant Nondestr 19:2053–2060. doi:10.1063/1.1291323

    Google Scholar 

  2. Hsu DK (2009) Nondestructive evaluation of sandwich structures: a review of some inspection techniques. J Sandw Struct Mater 11:275–291. doi:10.1177/1099636209105377

    Article  Google Scholar 

  3. Lanza di Scalea F, Rizzo P, Marzani A (2004) Propagation of ultrasonic guided waves in lap-shear adhesive joints: Case of incident a0 Lamb wave. J Acoust Soc Am 115:146–156. doi:10.1121/1.1630999

    Article  Google Scholar 

  4. Ji G, Ouyang Z, Li G (2011) Local interface shear fracture of bonded steel joints with various bondline thicknesses. Exp Mech. doi:10.1007/s11340-011-9507-y

  5. Adams RD, Drinkwater BW (1997) Nondestructive testing of adhesively-bonded joints. NDT & E Int 30:93–98. doi:10.1016/S0963-8695(96)00050-3

    Article  Google Scholar 

  6. Meola C, Carlomagno GM, Giorleo L (2003) Non-destructive evaluation of bonded structures with lock-in thermography. J Adhes Sci Technol 17:1207–1222. doi:10.1163/156856103322114543

    Article  Google Scholar 

  7. Schroeder JA, Ahmed T, Chaudhry B, Shepard S (2002) Non-destructive testing of structural composites and adhesively bonded composite joints: pulsed thermography. Compos Part A 33:1511–1517. doi:10.1016/S1359-835X(02)00139-2

    Article  Google Scholar 

  8. Meola C, Carlomagno GM, Squillace A, Giorleo G (2004) The use of infrared thermography for nondestructive evaluation of joints. Infrared Phy Technol 46:93–99. doi:10.1016/j.infrared.2004.03.013

    Article  Google Scholar 

  9. Jama HA, Hussein EMA, Lee-Sullivan P (1998) Detection of debonding in composite-aluminum joints using gamma-ray Compton scattering. NDT & E Int 31:99–103. doi:10.1016/S0963-8695(97)00029-7

    Article  Google Scholar 

  10. Gozdecki C, Smardzewski J (2005) Detection of failures of adhesively bonded joints using the acoustic emission method. Holzforsch 59:219–229. doi:10.1515/HF.2005.035

    Article  Google Scholar 

  11. Cosenza C, Cerniglia D, Djordjevic BB (2002) Non-contact ultrasonic inspection of skin/core bond in honeycomb with Lamb waves. Proc 2002 IEEE: Ultrason Symp 1:749–752. doi:10.1109/ULTSYM.2002.1193507

    Article  Google Scholar 

  12. Lanza di Scalea F, Rizzo P, Marzani A (2004) Assessment of bond state in lap-shear joints by guided wave transmission monitoring. Insight Non-Destr Test Cond Monit 46:135–141. doi:10.1784/insi.46.3.135.55527

    Article  Google Scholar 

  13. Lanza di Scalea F, Bonomo M, Tuzzeo D (2001) Ultrasonic Guided Wave Inspection of Bonded Lap Joints: Noncontact Method and Photoelastic Visualization. Res Nondestr Eval 13:153–171. doi:10.1007/s00164-001-0016-8

    Google Scholar 

  14. Le Crom B, Castaings M (2010) Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. J Acoust Soc Am 127:2220–2230. doi:10.1121/1.3309441

    Article  Google Scholar 

  15. Hanneman SE, Kinra VK, Zhu C (1992) A new technique for ultrasonic nondestructive evaluation of adhesive joints: Part II. Experiment Exp Mech 32:332–339. doi:10.1007/BF02325586

    Article  Google Scholar 

  16. Cawley P, Adams RD (1989) Sensitivity of the coin-tap method of nondestructive testing. Mater Eval 47:558–563

    Google Scholar 

  17. Cawley P, Adams RD (1988) The mechanics of the coin-tap method of non-destructive testing. J Sound Vib 122:299–316. doi:10.1016/S0022-460X(88)80356-0

    Article  Google Scholar 

  18. Cawley P (1991) A high frequency coin-tap method of non-destructive testing. Mech Syst Signal Process 5:1–11. doi:10.1016/0888-3270(91)90011-S

    Article  Google Scholar 

  19. Wu H, Siegel M (2000) Correlation of accelerometer and microphone data in the “coin tap test”. IEEE Trans Instrum Meas 49:493–497. doi:10.1109/19.850382

    Article  Google Scholar 

  20. Hsu DK, Barnard DJ, Peters JJ, Dayal V (2000) Physical basis of tap test as a quantitative imaging tool for composite structures on aircraft. Rev Prog Quant Nondestr 19:1857–1864. doi:10.1063/1.1306256

    Google Scholar 

  21. Peters JJ, Nielsen ZA, Hsu DK (2001) Comparison of local stiffness of composite honeycomb sandwich structures measured by tap test and mechanical test. Rev Prog Quant Nondestr 20:1031–1038. doi:10.1063/1.1373868

    Google Scholar 

  22. Baglio S, Savalli N (2006) “Fuzzy tap-testing” sensors for material health-state characterization. IEEE Trans Instrum Meas 55:761–770. doi:10.1109/TIM.2006.873806

    Article  Google Scholar 

  23. Barnard D, Foreman C, Hsu D (2009) Generating tap test images with a free-hand motorized tapper. Rev Prog Quant Nondestr 28:1680–1686. doi:10.1063/1.3114160

    Google Scholar 

  24. Crane RL, Dillingham G (2008) Composite bond inspection. J Mater Sci 43:6682–6694. doi:10.1007/s10853-008-2690-2

    Article  Google Scholar 

  25. Nesterenko VF (1984) Propagation of nonlinear compression pulses in granular media. J Appl Mech Tech Phys 24:733–743. doi:10.1007/BF00905892

    Article  MathSciNet  Google Scholar 

  26. Nesterenko VF (2001) Dynamics of heterogeneous materials. Springer, New York, pp 1–136

    Google Scholar 

  27. Ni X, Rizzo P, Daraio C (2011) Actuators for the generation of highly nonlinear solitary waves. Rev Sci Instrum 82:034902. doi:10.1063/1.3556442

    Article  Google Scholar 

  28. Job S, Melo F, Sokolow A, Sen S (2007) Solitary wave trains in granular chains: experiments, theory and simulations. Granul Matter 10:13–20. doi:10.1007/s10035-007-0054-2

    Article  MATH  Google Scholar 

  29. Yang J, Silvestro C, Khatri D, De Nardo L, Daraio C (2011) Interaction of highly nonlinear solitary waves with linear elastic media. Phys Rev E 83:046606. doi:10.1103/PhysRevE.83.046606

    Article  Google Scholar 

  30. Sen S, Manciu M, Wright JD (1998) Solitonlike pulses in perturbed and driven Hertzian chains and their possible applications in detecting buried impurities. Phys Rev E 57:2386–2397. doi:10.1103/PhysRevE.57.2386

    Article  Google Scholar 

  31. Manciu M, Sen S, Hurd AJ (1999) The propagation and backscattering of soliton-like pulses in a chain of quartz beads and related problems. (I). Propagation Phys A 274:588–606. doi:10.1016/S0378-4371(99)00371-4

    Google Scholar 

  32. Manciu M, Sen S, Hurd AJ (1999) The propagation and backscattering of soliton-like pulses in a chain of quartz beads and related problems. (II). Backscattering Phys A 274:607–618. doi:10.1016/S0378-4371(99)00372-6

    Article  Google Scholar 

  33. Ni X, Rizzo P, Yang J, Kathri D, Daraio C (2011) Monitoring the hydration of cement using highly nonlinear solitary waves. under review

  34. Ni X, Nassiri S, Rizzo P, Vandenbossche J (2011) Monitoring strength development in fresh concrete using highly nonlinear solitary waves. submitted

  35. Rizzo P, Cammarata M, Dutta D, Sohn H, Harries K (2009) Unsupervised Learning Algorithm for Fatigue Crack Detection in Waveguides. Smart Mater Struct 18:025016-1–025016-11. doi:10.1088/0964-1726/18/2/025016

    Article  Google Scholar 

  36. Rizzo P, Sorrivi E, Lanza di Scalea F, Viola E (2007) Wavelet-Based Outlier Analysis for Guided Wave Structural Monitoring: Application to Multi-wire Strands. J Sound Vib 307:52–68. doi:10.1016/j.jsv.2007.06.058

    Article  Google Scholar 

  37. Rizzo P, Lanza di Scalea F (2007) Wavelet-based Unsupervised and Supervised Learning Algorithms for Ultrasonic Structural Monitoring of Waveguides. In Reece PL (ed) Progress in Smart Materials and Structures Research, NOVA publishers, pp 227–290

  38. Guttormsson SE, Marks RJII, El-Sharkawi MA, Kerszenbaum I (1999) Elliptical novelty grouping for on-line short-turn detection of excited running rotors. IEEE Trans Energy Convers 14:16–22. doi:10.1109/60.749142

    Article  Google Scholar 

  39. Worden K, Manson G, Fieller NRJ (2000) Damage detection using outlier analysis. J Sound Vib 229:647–667. doi:10.1006/jsvi.1999.2514

    Article  Google Scholar 

  40. Daraio C, Nesterenko VF, Herbold EB, Jin S (2005) Strongly nonlinear waves in a chain of Teflon beads. Phys Rev E 72:016603. doi:10.1103/PhysRevE.72.016603

    Article  Google Scholar 

  41. Job S, Melo F, Sokolow A, Sen S (2005) How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys Rev Lett 94:178002. doi:10.1103/PhysRevLett.94.178002

    Article  Google Scholar 

  42. Ni X, Rizzo P (2011) Use of highly nonlinear solitary waves in NDT. Mater Eval. under review

Download references

Acknowledgements

This work was primarily supported by the U.S. National Science Foundation, grant CMMI—0825983 (Dr. Eduardo Misawa, Program Director). Partial support was also provided by the 2009 ASNT Fellowship Award. The authors thank Dr. Daraio at the California Institute of Technology and Dr. Yang, now at the University of South Carolina, for the useful technical comments and discussions had during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rizzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, X., Rizzo, P. Highly Nonlinear Solitary Waves for the Inspection of Adhesive Joints. Exp Mech 52, 1493–1501 (2012). https://doi.org/10.1007/s11340-012-9595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9595-3

Keywords

Navigation