Experimental Mechanics

, Volume 52, Issue 4, pp 417–428

Micron-Scale Residual Stress Measurement by Micro-Hole Drilling and Digital Image Correlation


DOI: 10.1007/s11340-011-9502-3

Cite this article as:
Winiarski, B. & Withers, P.J. Exp Mech (2012) 52: 417. doi:10.1007/s11340-011-9502-3


This paper reports a new technique, namely the incremental micro-hole-drilling method (IμHD) for mapping in-plane residual or applied stresses incrementally as a function of depth at the micron-scale laterally and the sub-micron scale depth-wise. Analogous to its macroscale counterpart, it is applicable either to crystalline or amorphous materials, but at the sub-micron scale. Our method involves micro-hole milling using the focused ion beam (FIB) of a dual beam FEGSEM/FIB microscope. The resulting surface displacements are recorded by digital image correlation of SEM images recorded during milling. The displacement fields recorded around the hole are used to reconstruct the stress profile as a function of depth. In this way residual stresses have been characterized around a drilled hole of 1.8microns. diameter, enabling the profiling of the stress variation at the sub-micron scale to a depth of 1.8 microns. The new method is used to determine the near surface stresses in a (peened) surface-severe-plastically-deformed (S2PD) Zr50Cu40Al10 (in atomic percent, at.%) bulk metallic glass bar. In plane principal stresses of -800 MPa ± 90 MPa and −600 MPa ± 90 MPa were measured, the maximum compressive stress being oriented 15° to the axis of the bar.


Scanning electron microscopy (SEM)Residual stress2D digital image correlationSurface decoration methodsIncremental centre hole drilling

Copyright information

© Society for Experimental Mechanics 2011

Authors and Affiliations

  1. 1.School of Materials, Materials Science CentreThe University of ManchesterManchesterUK