Skip to main content
Log in

A Multi-step Method for In Situ Mechanical Characterization of 1-D Nanostructures Using a Novel Micromechanical Device

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A novel micromechanical device was developed to convert the compressive force applied by a nanoindenter into pure tensile loading at the sample stages inside a scanning electron microscope or a transmission electron microscope, in order to mechanically deform a one-dimensional nanostructure, such as a nanotube or a nanowire. Force vs. displacement curves for samples with Young’s modulus above a threshold value can be obtained independently from readings of a quantitative high resolution nanoindenter with considerable accuracy, using a simple conversion relationship. However, in-depth finite element analysis revealed the existence of limitations for the device when testing samples with relatively low Young’s modulus, where forces applied on samples derived from nanoindenter readings using a predetermined force conversion factor will no longer be accurate. In this paper, we will demonstrate a multi-step method which can alleviate this problem and make the device capable of testing a wide range of samples with considerable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MEMS:

Micro-electro-mechanical systems

FEA:

Finite element analysis

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

AFM:

Atomic force microscope

1-D:

One-dimensional

SOI:

Silicon on insulator

References

  1. Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B Condens Matter Mater Phys 73235409:1–6

    Google Scholar 

  2. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater 47:525–529. doi:10.1038/nmat1403

    Article  Google Scholar 

  3. Wu B, Heidelberg A, Boland JJ, Sader JE, Sun XM, Li YD (2006) Microstructure-hardened silver nanowires. Nano Lett 63:468–472. doi:10.1021/nl052427f

    Article  Google Scholar 

  4. Ni H, Li XD, Gao HS (2006) Elastic modulus of amorphous SiO2 nanowires. Appl Phys Lett 88043108:1–3

    Google Scholar 

  5. Haque MA, Saif MTA (2004) Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. Proc Natl Acad Sci U S A 10117:6335–6340. doi:10.1073/pnas.0400066101

    Article  Google Scholar 

  6. Boyce BL, Grazier JM, Buchheit TE, Shaw MJ (2007) Strength distributions in polycrystalline silicon MEMS. Journal of Microelectromechanical Systems 162:179–190. doi:10.1109/JMEMS.2007.892794

    Article  Google Scholar 

  7. Naraghi M, Chasiotis L, Kahn H, Wen Y, Dzenis Y (2007) Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum 78085108:1–7

    Google Scholar 

  8. Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl Phys Lett 86013506:1–3

    Google Scholar 

  9. Muhlstein CL, Stach EA, Ritchie RO (2002) A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater 50:3579–3595. doi:10.1016/S1359-6454(02)00158-1

    Article  Google Scholar 

  10. Kahn H, Chen L, Ballarini R, Heuer AH (2006) Mechanical fatigue of polysilicon: effects of mean stress and stress amplitude. Acta Mater 54:667–678. doi:10.1016/j.actamat.2005.10.007

    Article  Google Scholar 

  11. Ganesan Y, Lu Y, Lu H, Lou J (2008) In situ mechanical characterization of one dimensional nanoscale building blocks using novel microfabricated devices. IEEE-Nano Conf. Proc 8:783–786

    Google Scholar 

  12. Durelli AJ, Morse S, Parks V (1962) The theta specimen for determining tensile strength of brittle materials. Mater Res Stand, ASTM 2:114–117

    Google Scholar 

  13. Quinn GD, Fuller E, Dan X, Jillavenkatesa A, Li M, Smith D, Beall J (2005) A novel test method for measuring mechanical properties at the small-scale: the theta specimen. Ceram Eng Sci Proc 262:117–126

    Article  Google Scholar 

  14. Guckel H, Burns D, Rutigliano C, Lovell E, Choi B (1992) Diagnostic microstructures for the measurement of intrinsic strain in thin films. J Micromech Microeng 2:86–95. doi:10.1088/0960-1317/2/2/004

    Article  Google Scholar 

  15. Schneider D, Tucker MD (1996) Non-destructive characterization and evaluation of thin films by laser-induced ultrasonic surface waves. Thin Solid Films 290–291:305–311. doi:10.1016/S0040-6090(96)09029-3

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science foundation grant NSF ECCS 0702766 and by Air Force Research laboratory grant AFRL FA8650-07-2-5061. The authors gratefully acknowledge Brian Peters (MTS Nano Instruments, Oak Ridge, TN), Ryan Stromberg and Richard Nay (Hysitron Inc., Minneapolis, MN) for the help they provided with device testing. The authors would also like to thank Dr. J. E. Akin and Xiaoge Gan (Rice University, Houston, TX), Dr. A. Minor (Lawrence Berkeley Lab, Berkeley, CA), Dr. R. Ballarini (University of Minnesota, Minneapolis, MN) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Ganesan, Y. & Lou, J. A Multi-step Method for In Situ Mechanical Characterization of 1-D Nanostructures Using a Novel Micromechanical Device. Exp Mech 50, 47–54 (2010). https://doi.org/10.1007/s11340-009-9222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-009-9222-0

Keywords

Navigation