Skip to main content
Log in

Protein Mechanics: A New Frontier in Biomechanics

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Proteins play essential roles in all aspects of cellular processes, such as biosynthesis, division, growth, motility, metabolism, signaling, and transmission of genetic information. Proteins, however, could deform under mechanical forces, thus altering their biological functions. Here we present protein deformation as a possible molecular basis for mechanosensing and mechanotransduction, elucidate the important features of protein mechanics including protein deformation mode and dynamics, illustrate how protein deformation could alter biological function, and describe the important roles of protein deformation in force-sensing, force transducing and mechanochemical coupling in cells. The experimental and modeling challenges in protein mechanics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (2002) Molecular biology of the cell, 4th edn. Garland, New York, NY.

    Google Scholar 

  2. Wang N, Butler JP Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127. doi:10.1126/science.7684161.

    Article  Google Scholar 

  3. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275. doi:10.1038/nrm1890.

    Article  Google Scholar 

  4. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer, Sunderland, MA.

    Google Scholar 

  5. Block SM, Goldstein LS, et al (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352. doi:10.1038/348348a0.

    Article  Google Scholar 

  6. Stossel TP (1993) On the crawling of animal cells. Science 260:1086–1094. doi:10.1126/science.8493552.

    Article  Google Scholar 

  7. Pelham RJ, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94:13661–13665. doi:10.1073/pnas.94.25.13661.

    Article  Google Scholar 

  8. Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi:10.1126/science.1116995.

    Article  Google Scholar 

  9. Brownell WE, Spector AA, Raphael RM, Popel AS (2001) Micro- and nanomechanics of the cochlear outer hair cell. Annu Rev Biomed Eng 3:169–194. doi:10.1146/annurev.bioeng.3.1.169.

    Article  Google Scholar 

  10. Bao G (2002) Mechanics of biomolecules. J Mech Phys Solids 50:2237–2274. doi:10.1016/S0022-5096(02)00035-2.

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2:189–226. doi:10.1146/annurev.bioeng.2.1.189.

    Article  Google Scholar 

  12. Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695. doi:10.1146/annurev.cellbio.19.111301.153011.

    Article  Google Scholar 

  13. Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18:472–481. doi:10.1016/j.ceb.2006.08.012.

    Article  Google Scholar 

  14. Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98:1042–1046. doi:10.1073/pnas.031562998.

    Article  Google Scholar 

  15. Fung YC (1990) Biomechanics: motion, flow, stress, and growth. Springer, New York.

    MATH  Google Scholar 

  16. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York.

    Google Scholar 

  17. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi:10.1016/j.cell.2006.06.044.

    Article  Google Scholar 

  18. Ali MH, Schumacker PT (2002) Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30:S198–S206. doi:10.1097/00003246-200205001-00005.

    Article  Google Scholar 

  19. Wootton DM, Ku DN (1999) Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng 1:299–329. doi:10.1146/annurev.bioeng.1.1.299.

    Article  Google Scholar 

  20. Fisher AB, Chien S, Barakat AI, Nerem RM (2001) Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 281:L529–L533.

    Google Scholar 

  21. Hu S, Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29:1511–1523. doi:10.1006/jmcc.1997.0392.

    Article  Google Scholar 

  22. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887. doi:10.1161/01.RES.0000039537.73816.E5.

    Article  Google Scholar 

  23. Creighton TE (1993) Proteins. Freeman, New York, NY.

    Google Scholar 

  24. Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Matters 2:715–726. doi:10.1038/nmat1001.

    Article  Google Scholar 

  25. Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New York, NY.

    Google Scholar 

  26. McCammon JA, Gelin BR, Karplus M, Wolynes PG (1976) The hinge-bending mode in lysozyme. Nature 262:325–326. doi:10.1038/262325a0.

    Article  Google Scholar 

  27. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub H (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112. doi:10.1126/science.276.5315.1109.

    Article  Google Scholar 

  28. Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116. doi:10.1126/science.276.5315.1112.

    Article  Google Scholar 

  29. Tskhovrebova L, Trinnick J, Sleep JA, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312. doi:10.1038/387308a0.

    Article  Google Scholar 

  30. Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM (1998) The molecular elasticity of the extracellular matrix protein tenascin. Nature 393:181–185. doi:10.1038/30270.

    Article  Google Scholar 

  31. Krammer A, Lu H, Isralewitz B, Schulten K, Vogel V (1999) Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc Natl Acad Sci USA 96:1351–1356. doi:10.1073/pnas.96.4.1351.

    Article  Google Scholar 

  32. Ohashi T, Kiehart DP, Ericson H (1999) Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc Natl Acad Sci USA 96:2153–2158.

    Article  Google Scholar 

  33. Craig D, Krammer A, Schulten K, Vogel V (2001) Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc Natl Acad Sci USA 98:5590–5595. doi:10.1073/pnas.101582198.

    Article  Google Scholar 

  34. Vogel V, Thomas WE, Craig DW, Krammer A, Baneyx G (2001) Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol 19:416–423. doi:10.1016/S0167-7799(01)01737-1.

    Article  Google Scholar 

  35. Puklin-Faucher E, Gao M, Schulten K, Vogel V (2006) How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J Cell Biol 175:349–360. doi:10.1083/jcb.200602071.

    Article  Google Scholar 

  36. Ruggeri ZM (2003) von Willebrand factor. Curr Opin Hematol 10:142–149. doi:10.1097/00062752-200303000-00008.

    Article  Google Scholar 

  37. Johnson CP, Tang HY, Carag C, Speicher DW, Discher DE (2007) Forced unfolding of proteins within cells. Science 317:663–666. doi:10.1126/science.1139857.

    Article  Google Scholar 

  38. Soto C (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett 498:204–207. doi:10.1016/S0014-5793(01)02486-3.

    Article  Google Scholar 

  39. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770. doi:10.1021/ma00130a008.

    Article  Google Scholar 

  40. Schwaiger I, Schleicher M, Noegel AA, Rief M (2005) The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments. EMBO Rep 6:46–51. doi:10.1038/sj.embor.7400317.

    Article  Google Scholar 

  41. Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53. doi:10.1038/16219.

    Article  Google Scholar 

  42. Subbiah S (1996) Protein motions. Chapman & Hall, Austin, TX.

    Google Scholar 

  43. van Kampen NG (1981) Stochastic processes in physics and chemistry. North-Holland, New York, NY.

    MATH  Google Scholar 

  44. Risken H (1984) The fokker-planck equation: methods of solution and applications, 2nd edn. Springer, New York, NY.

    MATH  Google Scholar 

  45. Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36:823–841. doi:10.1103/PhysRev.36.823.

    Article  Google Scholar 

  46. Boyer PD (1993) The binding change mechanism for ATP synthase—some probabilities and possibilities. Biochem Biophys Acta 1140:215–250. doi:10.1016/0005-2728(93)90063-L.

    Article  Google Scholar 

  47. Lauffenburger DA, Linderman JJ (1993) Receptors. Oxford University Press, New York.

    Google Scholar 

  48. Israelachvili J (1992) Intermolecular and surface forces. Academic, San Diego, CA.

    Google Scholar 

  49. Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555.

    Article  Google Scholar 

  50. Sanchez-Mateos P, Cabanas C, Sanchez-Madrid F (1996) Regulation of integrin function. Semin Cancer Biol 7:99–109. doi:10.1006/scbi.1996.0015.

    Article  Google Scholar 

  51. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526. doi:10.1126/science.279.5350.519.

    Article  Google Scholar 

  52. Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279:527–533. doi:10.1126/science.279.5350.527.

    Article  Google Scholar 

  53. Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR, Edwards AM, David PR, Kornberg RD (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288:640–649. doi:10.1126/science.288.5466.640.

    Article  Google Scholar 

  54. Walker ML, Burgess SA, Sellers JR, Wang F, Hammer JA 3rd, Trinick J, Knight PJ (2000) Two-headed binding of a processive myosin to F-actin. Nature 405:804–807. doi:10.1038/35015592.

    Article  Google Scholar 

  55. Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95. doi:10.1126/science.288.5463.88.

    Article  Google Scholar 

  56. Meyhofer E, Howard J (1995) The force generated by a single kinesin molecule against an elastic load. Proc Natl Acad Sci USA 92:574–578. doi:10.1073/pnas.92.2.574.

    Article  Google Scholar 

  57. Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904. doi:10.1038/35073513.

    Article  Google Scholar 

  58. Kinosita K Jr, Yasuda R, Noji H (2000) F1-ATPase: a highly efficient rotary ATP machine. Essays Biochem 35:3–18.

    Google Scholar 

  59. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemegno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–1558. doi:10.1126/science.290.5496.1555.

    Article  Google Scholar 

  60. Elston T, Wang H, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510–513. doi:10.1038/35185.

    Article  Google Scholar 

  61. Wang H, Oster G (1998) Energy transduction in the F1 motor of ATP synthase. Nature 396:279–282. doi:10.1038/24409.

    Article  Google Scholar 

  62. Baneyx G, Baugh L, Vogel V (2001) Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc Natl Acad Sci USA 98:14464–14468. doi:10.1073/pnas.251422998.

    Article  Google Scholar 

  63. Baneyx G, Baugh L, Vogel V (2002) Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci USA 99:5139–5143. doi:10.1073/pnas.072650799.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Heart Lung and Blood Institute of the NIH as a Program of Excellence in Nanotechnology (HL80711) and the NIH Roadmap Initiative in Nanomedicine through a Nanomedicine Development Center award (EY018244). The author would like to thank Dr. Wonjong Rhee for generating the results shown in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, G. Protein Mechanics: A New Frontier in Biomechanics. Exp Mech 49, 153–164 (2009). https://doi.org/10.1007/s11340-008-9154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9154-0

Keywords

Navigation