Skip to main content
Log in

Material Property Differentiation in Indentation Testing Using Secondary Sensors

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Current in vivo and in situ testing procedures are dominated by indentation. The major challenge for this testing technique is in finding a unique solution to the “inverse problem” i.e., defining an appropriate constitutive framework and obtaining material properties consistent with the indentation force–displacement data. Much of the information related to the interplay between shear and bulk compliance in the deformation field beneath the indenter is lost when capturing this single output. We propose a material testing method that follows the well proven path of conventional indentation methods, but enriches the signal by acquiring displacement data not only for the actuated indenter, but also for a set of offset, passive secondary sensors. We use finite element (FE) simulations involving three cases of materials: (a) linear elastic, (b) hyperelastic and (c) time-dependent to demonstrate the benefit of these additional sensors. The results indicate that the addition of these secondary sensors can help to discern between materials with varying degrees of compressibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bilston, L, Liu, Z, & Phan-Thien, N (2001). Nonlinear viscoelastic behaviour of brain tissue in shear: some new experimental data and a differential constitutive model. Biorheology, 38, 335–345.

    Google Scholar 

  2. Estes MS, McElhaney JH (1970) Response of brain tissue of compressive loading. ASME Paper no. 70-BHF-13.

  3. Galford, J, & McElhaney, J (1970). A viscoelastic study of scalp, brain and dura. J Biomech, 3, 211–221.

    Article  Google Scholar 

  4. Gefen, A, & Margulies, S (2003). Are in vivo and in situ brain tissues mechanically similar. J Biomech, 37, 1339–1352.

    Article  Google Scholar 

  5. Mendis, K, Stalnaker, R, & Advani, S (1995). A constitutive relationship for large deformation finite element modeling of brain tissue. J Biomech Eng, 117, 279–285.

    Article  Google Scholar 

  6. Miller, K, & Chinzei, K (1997). Constitutive modeling of brain tissue: experiment and theory. J Biomech, 30, 1115–1121.

    Article  Google Scholar 

  7. Miller, K, Chinzei, K, Orssengo, G, & Bednarz, P (2000). Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech, 33, 1369–1376.

    Article  Google Scholar 

  8. Miller, K (2000). Biomechanics of soft tissues. Med Sci Monit, 6, 158–167.

    Google Scholar 

  9. Miller, K (2005). Method of testing very soft biological tissues in compression. J Biomech, 38, 153–158.

    Google Scholar 

  10. Ommaya, A (1968). Mechanical properties of tissues of the nervous system. J Bio Mech, 1, 127–138.

    Google Scholar 

  11. Pamidi, MR, & Advani, SH (1978). Nonlinear constitutive relations for human brain tissue. J Biomech Eng, 100, 44–48.

    Google Scholar 

  12. Shuck, LZ, & Advani, SH (1972). Rheological response of human brain tissue in shear. J Basic Eng, 94, 905–911.

    Google Scholar 

  13. Vaidyanathan, R (2001). Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater, 49, 3781–3789.

    Article  Google Scholar 

  14. Bengisu, M (2001). Engineering ceramics p. 210. New York, NY: Springer.

    Google Scholar 

  15. Macmillan, IM, & Sweeney, J (2004). An introduction to the mechanical properties of solid polymers p. 131. Hoboken, NJ: Wiley.

    Google Scholar 

  16. Huang, G, & Lu, H (2007). Measurements of two independent viscoelastic functions by nanoindentation. Exp Mech, 47, 87–98.

    Article  Google Scholar 

  17. Lucas, BN, Hay, JC, & Oliver, WC (2004). Using multidimensional contact mechanics experiments to measure Poisson’s ratio. J Mater Res, 19, 58–65.

    Google Scholar 

  18. Bolzon, G, Maier, G, & Panico, M (2004). Material model calibration by indentation, imprint mapping and inverse analysis. Int J Solids Struct, 41, 2957–2975.

    Article  MATH  Google Scholar 

  19. Gouldstone, A, Chollacoop, N, Dao, M, Li, J, Minor, A, & Shen, YL (2007). Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater, 55, 4015–4039.

    Article  Google Scholar 

  20. Tabor, D (1951). Hardness of metals. Oxford, UK: Clarendon.

    Google Scholar 

  21. Gent, AN (1958). Trans IRI, 34, 2.

    Google Scholar 

  22. Oliver, WC, & Pharr, GM (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 7, 1564–1583.

    Article  Google Scholar 

  23. Oliver, WC, & Pharr, GM (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mat Res, 19, 3–20.

    Article  Google Scholar 

  24. Cheng, L, Xia, X, Yu, W, Scriven, LE, & Gerberich, WW (2000). Flat-punch indentation of viscoelastic material. J Polym Sci B Polym Phys, 38, 10–22.

    Article  Google Scholar 

  25. Huang, G, Wang, B, & Lu, H (2005). Measurements of viscoelastic functions of polymers in the frequency-domain using nanoindentation. Mech Time-Depend Mater, 8, 345–364.

    Article  Google Scholar 

  26. Lu, HN, Wang, B, Ma, J, Huang, G, & Viswanathan, H (2003). Measurement of creep compliance of solid polymers by nanoindentation. Mech Time-Depend Mater, 7, 189–207.

    Article  Google Scholar 

  27. Odegard, GM, Gates, TS, & Herring, HM (2005). Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp Mech, 45, 130–137.

    Article  Google Scholar 

  28. Qi, H, Joyce, K, & Boyce, K (2003). Durometer hardness and the stress-strain behavior of elastomeric materials. Rubber Chem Technol, 76, 419–435.

    Google Scholar 

  29. Olberding, JE, & Suh, JK (2006). A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: potential application to hypercompliant soft tissues. J Biomech, 39, 2468–2475.

    Article  Google Scholar 

  30. Kerdok, AE, Ottensmeyer, MP, & Howe, RD (2006). Effects of perfusion on the viscoelastic characteristics of liver. J Biomech, 39, 2221–2231.

    Article  Google Scholar 

  31. Vannah, WM, & Childress, DS (1996). Indentor tests and finite element modeling of bulk muscular tissue in-vivo. J Rehabil Res Dev, 33, 239–252.

    Google Scholar 

  32. Li, LP, & Herzog, W (2006). Arthroscopic evaluation of cartilage degeneration using indentation testing—influence of indenter geometery. Clin Biomech, 21, 420–426.

    Article  Google Scholar 

  33. Gefen, A, Gefen, N, Zhu, Q, Raghupathi, R, & Marguiles, SS (2003). Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotraum, 20, 1163–1177.

    Article  Google Scholar 

  34. Spilker, RL, Suh, JK, & Mow, VC (1992). A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage. J Biomech Eng, 114, 191–201.

    Article  Google Scholar 

  35. Warner, MD, Taylor, WR, & Clift, SE (2001). Finite element biphasic indentation of cartilage: a comparison of experimental indenter and physiological contact geometries. Proc Inst Mech Eng, 215, 487–496.

    Google Scholar 

  36. Ottensmeyer, MP (2002). TeMPeST 1-D: an instrument for measuring solid organ soft tissue properties. Exp Techniques, 26, 48–50.

    Article  Google Scholar 

  37. Huber, N, Konstandinidis, A, & Tsakmakis, Ch (2001). Determination of Poisson’s ratio by spherical indentation using neural networks. Part I. Theory. J Appl Mech, 68, 218–223.

    Article  MATH  Google Scholar 

  38. Huber, N, Konstandinidis, A, & Tsakmakis, Ch (2001). Determination of Poisson’s ratio by spherical indentation using neural networks. Part II. Indentation method. J Appl Mech, 68, 224–229.

    Article  MATH  Google Scholar 

  39. Hibbit, Karlsson & Sorensen (2004). ABAQUS/Standard 6.4 user’s manual. Pawtucket, RI: Hibbit, Karlsson, & Sorensen.

    Google Scholar 

  40. Wu, JZ, Herzog, W, & Epstein, M (1998). Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. J Biomech, 31, 165–169.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the US Army through the MIT Institute for Soldier Nanotechnologies (Contract no. DAAD-19-02-D0002), the US Army Research Office and the Joint Improvised Explosive Devices Defeat Organization under contract number W911NF-07-1-0035. The content does not necessarily reflect the position of the government and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Socrate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, A., Socrate, S. Material Property Differentiation in Indentation Testing Using Secondary Sensors. Exp Mech 48, 549–558 (2008). https://doi.org/10.1007/s11340-007-9087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9087-z

Keywords

Navigation